Please wait a minute...
Submit  |   Chinese  | 
 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2015, Vol. 1 Issue (1) : 21 -26     https://doi.org/10.15302/J-ENG-2015005
Research |
Magnetic Helical Micro- and Nanorobots: Toward Their Biomedical Applications
Famin Qiu,Bradley J. Nelson()
Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich CH-8092, Switzerland
Abstract
Abstract  

Magnetic helical micro- and nanorobots can perform 3D navigation in various liquids with a sub-micrometer precision under low-strength rotating magnetic fields (<10 mT). Since magnetic fields with low strengths are harmless to cells and tissues, magnetic helical micro/nanorobots are promising tools for biomedical applications, such as minimally invasive surgery, cell manipulation and analysis, and targeted therapy. This review provides general information on magnetic helical micro/nanorobots, including their fabrication, motion control, and further functionalization for biomedical applications.

Keywords magnetic helical micro/nanorobots      mobile micro/nanorobots      artificial bacterial flagella (ABFs)      functionalization      biomedical applications     
Fund: 
Corresponding Authors: Bradley J. Nelson   
Just Accepted Date: 31 March 2015   Issue Date: 02 July 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Famin Qiu
Bradley J. Nelson
Cite this article:   
Famin Qiu,Bradley J. Nelson. Magnetic Helical Micro- and Nanorobots: Toward Their Biomedical Applications[J]. Engineering, 2015, 1(1): 21 -26 .
URL:  
http://engineering.org.cn/EN/10.15302/J-ENG-2015005     OR     http://engineering.org.cn/EN/Y2015/V1/I1/21
References
1   B. J. Nelson, I. K. Kaliakatsos, J. J. Abbott. Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng., 2010, 12(1): 55–85
2   W. Gao, J. Wang. The environmental impact of micro/nanomachines: A review. ACS Nano, 2014, 8(4): 3170–3180
3   L. Zhang, K. E. Peyer, B. J. Nelson. Artificial bacterial flagella for micromanipulation. Lab Chip, 2010, 10(17): 2203–2215
4   J. J. Abbott,  How should microrobots swim? Int. J. Robot. Res., 2009, 28(11−12): 1434–1447
5   E. M. Purcell. Life at low Reynolds number. Am. J. Phys., 1977, 45(1): 3–11
6   H. C. Berg, R. A. Anderson. Bacteria swim by rotating their flagellar filaments. Nature, 1973, 245(5425): 380–382
7   T. Baba,  Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: The Keio collection. Mol. Syst. Biol.  2006, 2(1): 2006.0008
8   W. R. DiLuzio,  Escherichia coli swim on the right-hand side. Nature, 2005, 435(7046): 1271–1274
9   K. E. Peyer, S. Tottori, F. Qiu, L. Zhang, B. J. Nelson. Magnetic helical micromachines. Chemi. Eur. J., 2013, 19(1): 28–38
10   K. E. Peyer, L. Zhang, B. J. Nelson. Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale, 2013, 5(4): 1259–1272
11   T. Honda, K. I. Arai, K. Ishiyama. Micro swimming mechanisms propelled by external magnetic fields. IEEE Trans. Magn., 1996, 32(5): 5085–5087
12   K. Kikuchi, A. Yamazaki, M. Sendoh, K. Ishiyama, K. I. Arai. Fabrication of a spiral type magnetic micromachine for trailing a wire. IEEE Trans. Magn., 2005, 41(10): 4012–4014
13   D. J. Bell, S. Leutenegger, K. M. Hammar, L. X. Dong, B. J. Nelson. Flagella-like propulsion for microrobots using a nanocoil and a rotating electromagnetic field. In: Proceedings of IEEE International Conference on Robotics and Automation, 2007: 1128–1133
14   A. Ghosh, P. Fischer. Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett., 2009, 9(6): 2243–2245
15   S. Tottori, L. Zhang, F. Qiu, K. K. Krawczyk, A. Franco-Obregón, B. J. Nelson. Magnetic helical micromachines: Fabrication, controlled swimming, and cargo transport. Adv. Mater., 2012, 24(6): 811–816
16   W. Gao,  Bioinspired helical microswimmers based on vascular plants. Nano Lett., 2014, 14(1): 305–310
17   P. L. Venugopalan, R. Sai, Y. Chandorkar, B. Basu, S. Shivashankar, A. Ghosh. Conformal cytocompatible ferrite coatings facilitate the realization of a nanovoyager in human blood. Nano Lett., 2014, 14(4): 1968–1975
18   L. Zhang,  Characterizing the swimming properties of artificial bacterial flagella. Nano Lett., 2009, 9(10): 3663–3667
19   B. J. Nelson, K. E. Peyer. Micro- and nanorobots swimming in heterogeneous liquids. ACS Nano, 2014, 8(9): 8718–8724
20   F. Qiu,  Noncytotoxic artificial bacterial flagella fabricated from biocompatible ORMOCOMP and iron coating. J. Mater. Chem. B, 2014, 2(4): 357–362
21   J. Li,  Template electrosynthesis of tailored-made helical nanoswimmers. Nanoscale, 2014, 6(16): 9415–9420
22   D. Schamel, Nanopropellers and their actuation in complex viscoelastic media. ACS Nano, 2014, 8(9): 8794–8801
23   S. Schuerle, S. Pané, E. Pellicer, J. Sort, M. D. Baró, B. J. Nelson. Helical and tubular lipid microstructures that are electroless-coated with CoNiReP for wireless magnetic manipulation. Small, 2012, 8(10): 1498–1502
24   S. Kawata, H. B. Sun, T. Tanaka, K. Takada. Finer features for functional microdevices—Micromachines can be created with higher resolution using two-photon absorption. Nature, 2001, 412(6848): 697–698
25   M. Suter,  Superparamagnetic microrobots: Fabrication by two-photon polymerization and biocompatibility. Biomed. Microdevices, 2013, 15(6): 997–1003
26   M. A. Zeeshan,  Hybrid helical magnetic microrobots obtained by 3D template-assisted electrodeposition. Small, 2014, 10(7): 1284–1288
27   T. Y. Huang,  Cooperative manipulation and transport of microobjects using multiple helical microcarriers. RSC Adv., 2014, 4(51): 26771–26776
28   F. Qiu, R. Mhanna, L. Zhang, Y. Ding, S. Fujita, B. J. Nelson. Artificial bacterial flagella functionalized with temperature-sensitive liposomes for controlled release. Sens. Actuators B Chem., 2014, 196: 676–681
29   R. Mhanna,  Artificial bacterial flagella for remote-controlled targeted single-cell drug delivery. Small, 2014, 10(10): 1953–1957
30   F. Qiu, S. Fujita, R. Mhanna, L. Zhang, B. R. Simona, B. J. Nelson. Magnetic helical microswimmers functionalized with lipoplexes for targeted gene delivery. Adv. Funct. Mater., 2015, 25(11): 1666–1671
31   A. Servant, F. Qiu, M. Mazza, K. Kostarelos, B. J. Nelson. Controlled in vivo swimming of a swarm of bacteria-like microrobotic flagella. Adv. Mater., 2015, 27(19): 2981–2988
Related
[1] Holger Krueger. Standardization for Additive Manufacturing in Aerospace[J]. Engineering, 2017, 3(5): 585 .
[2] Joe A. Sestak Jr.. High School Students from 157 Countries Convene to Address One of the 14 Grand Challenges for Engineering: Access to Clean Water[J]. Engineering, 2017, 3(5): 583 -584 .
[3] Lance A. Davis. Climate Agreement—Revisited[J]. Engineering, 2017, 3(5): 578 -579 .
[4] Ben A. Wender, M. Granger Morgan, K. John Holmes. Enhancing the Resilience of Electricity Systems[J]. Engineering, 2017, 3(5): 580 -582 .
[5] Jin-Xun Liu, Peng Wang, Wayne Xu, Emiel J. M. Hensen. Particle Size and Crystal Phase Effects in Fischer-Tropsch Catalysts[J]. Engineering, 2017, 3(4): 467 -476 .
[6] Luis Ribeiro e Sousa, Tiago Miranda, Rita Leal e Sousa, Joaquim Tinoco. The Use of Data Mining Techniques in Rockburst Risk Assessment[J]. Engineering, 2017, 3(4): 552 -558 .
[7] Maggie Bartolomeo. Third Global Grand Challenges Summit for Engineering[J]. Engineering, 2017, 3(4): 434 -435 .
[8] Michael Powalla, Stefan Paetel, Dimitrios Hariskos, Roland Wuerz, Friedrich Kessler, Peter Lechner, Wiltraud Wischmann, Theresa Magorian Friedlmeier. Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2[J]. Engineering, 2017, 3(4): 445 -451 .
[9] Raffaella Ocone. Reconciling “Micro” and “Macro” through Meso-Science[J]. Engineering, 2017, 3(3): 281 -282 .
[10] Baoning Zong, Bin Sun, Shibiao Cheng, Xuhong Mu, Keyong Yang, Junqi Zhao, Xiaoxin Zhang, Wei Wu. Green Production Technology of the Monomer of Nylon-6: Caprolactam[J]. Engineering, 2017, 3(3): 379 -384 .
[11] Pengcheng Xu, Yong Jin, Yi Cheng. Thermodynamic Analysis of the Gasification of Municipal Solid Waste[J]. Engineering, 2017, 3(3): 416 -422 .
[12] Lei Xu, Jinhui Peng, Hailong Bai, C. Srinivasakannan, Libo Zhang, Qingtian Wu, Zhaohui Han, Shenghui Guo, Shaohua Ju, Li Yang. Application of Microwave Melting for the Recovery of Tin Powder[J]. Engineering, 2017, 3(3): 423 -427 .
[13] Ee Teng Kho, Salina Jantarang, Zhaoke Zheng, Jason Scott, Rose Amal. Harnessing the Beneficial Attributes of Ceria and Titania in a Mixed-Oxide Support for Nickel-Catalyzed Photothermal CO2 Methanation[J]. Engineering, 2017, 3(3): 393 -401 .
[14] Ke Dang, Tuo Wang, Chengcheng Li, Jijie Zhang, Shanshan Liu, Jinlong Gong. Improved Oxygen Evolution Kinetics and Surface States Passivation of Ni-Bi Co-Catalyst for a Hematite Photoanode[J]. Engineering, 2017, 3(3): 285 -289 .
[15] Mu Xiao, Songcan Wang, Supphasin Thaweesak, Bin Luo, Lianzhou Wang. Tantalum (Oxy)Nitride: Narrow Bandgap Photocatalysts for Solar Hydrogen Generation[J]. Engineering, 2017, 3(3): 365 -378 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
京ICP备11030251号-2

 Engineering