Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2015, Vol. 1 Issue (1) : 21 -26
Research |
Magnetic Helical Micro- and Nanorobots: Toward Their Biomedical Applications
Famin Qiu,Bradley J. Nelson()
Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich CH-8092, Switzerland

Magnetic helical micro- and nanorobots can perform 3D navigation in various liquids with a sub-micrometer precision under low-strength rotating magnetic fields (<10 mT). Since magnetic fields with low strengths are harmless to cells and tissues, magnetic helical micro/nanorobots are promising tools for biomedical applications, such as minimally invasive surgery, cell manipulation and analysis, and targeted therapy. This review provides general information on magnetic helical micro/nanorobots, including their fabrication, motion control, and further functionalization for biomedical applications.

Keywords magnetic helical micro/nanorobots      mobile micro/nanorobots      artificial bacterial flagella (ABFs)      functionalization      biomedical applications     
Corresponding Authors: Bradley J. Nelson   
Just Accepted Date: 31 March 2015   Issue Date: 02 July 2015
E-mail this article
E-mail Alert
Articles by authors
Famin Qiu
Bradley J. Nelson
Cite this article:   
Famin Qiu,Bradley J. Nelson. Magnetic Helical Micro- and Nanorobots: Toward Their Biomedical Applications[J]. Engineering, 2015, 1(1): 21 -26 .
URL:     OR
1   B. J. Nelson, I. K. Kaliakatsos, J. J. Abbott. Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng., 2010, 12(1): 55–85
2   W. Gao, J. Wang. The environmental impact of micro/nanomachines: A review. ACS Nano, 2014, 8(4): 3170–3180
3   L. Zhang, K. E. Peyer, B. J. Nelson. Artificial bacterial flagella for micromanipulation. Lab Chip, 2010, 10(17): 2203–2215
4   J. J. Abbott,  How should microrobots swim? Int. J. Robot. Res., 2009, 28(11−12): 1434–1447
5   E. M. Purcell. Life at low Reynolds number. Am. J. Phys., 1977, 45(1): 3–11
6   H. C. Berg, R. A. Anderson. Bacteria swim by rotating their flagellar filaments. Nature, 1973, 245(5425): 380–382
7   T. Baba,  Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: The Keio collection. Mol. Syst. Biol.  2006, 2(1): 2006.0008
8   W. R. DiLuzio,  Escherichia coli swim on the right-hand side. Nature, 2005, 435(7046): 1271–1274
9   K. E. Peyer, S. Tottori, F. Qiu, L. Zhang, B. J. Nelson. Magnetic helical micromachines. Chemi. Eur. J., 2013, 19(1): 28–38
10   K. E. Peyer, L. Zhang, B. J. Nelson. Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale, 2013, 5(4): 1259–1272
11   T. Honda, K. I. Arai, K. Ishiyama. Micro swimming mechanisms propelled by external magnetic fields. IEEE Trans. Magn., 1996, 32(5): 5085–5087
12   K. Kikuchi, A. Yamazaki, M. Sendoh, K. Ishiyama, K. I. Arai. Fabrication of a spiral type magnetic micromachine for trailing a wire. IEEE Trans. Magn., 2005, 41(10): 4012–4014
13   D. J. Bell, S. Leutenegger, K. M. Hammar, L. X. Dong, B. J. Nelson. Flagella-like propulsion for microrobots using a nanocoil and a rotating electromagnetic field. In: Proceedings of IEEE International Conference on Robotics and Automation, 2007: 1128–1133
14   A. Ghosh, P. Fischer. Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett., 2009, 9(6): 2243–2245
15   S. Tottori, L. Zhang, F. Qiu, K. K. Krawczyk, A. Franco-Obregón, B. J. Nelson. Magnetic helical micromachines: Fabrication, controlled swimming, and cargo transport. Adv. Mater., 2012, 24(6): 811–816
16   W. Gao,  Bioinspired helical microswimmers based on vascular plants. Nano Lett., 2014, 14(1): 305–310
17   P. L. Venugopalan, R. Sai, Y. Chandorkar, B. Basu, S. Shivashankar, A. Ghosh. Conformal cytocompatible ferrite coatings facilitate the realization of a nanovoyager in human blood. Nano Lett., 2014, 14(4): 1968–1975
18   L. Zhang,  Characterizing the swimming properties of artificial bacterial flagella. Nano Lett., 2009, 9(10): 3663–3667
19   B. J. Nelson, K. E. Peyer. Micro- and nanorobots swimming in heterogeneous liquids. ACS Nano, 2014, 8(9): 8718–8724
20   F. Qiu,  Noncytotoxic artificial bacterial flagella fabricated from biocompatible ORMOCOMP and iron coating. J. Mater. Chem. B, 2014, 2(4): 357–362
21   J. Li,  Template electrosynthesis of tailored-made helical nanoswimmers. Nanoscale, 2014, 6(16): 9415–9420
22   D. Schamel, Nanopropellers and their actuation in complex viscoelastic media. ACS Nano, 2014, 8(9): 8794–8801
23   S. Schuerle, S. Pané, E. Pellicer, J. Sort, M. D. Baró, B. J. Nelson. Helical and tubular lipid microstructures that are electroless-coated with CoNiReP for wireless magnetic manipulation. Small, 2012, 8(10): 1498–1502
24   S. Kawata, H. B. Sun, T. Tanaka, K. Takada. Finer features for functional microdevices—Micromachines can be created with higher resolution using two-photon absorption. Nature, 2001, 412(6848): 697–698
25   M. Suter,  Superparamagnetic microrobots: Fabrication by two-photon polymerization and biocompatibility. Biomed. Microdevices, 2013, 15(6): 997–1003
26   M. A. Zeeshan,  Hybrid helical magnetic microrobots obtained by 3D template-assisted electrodeposition. Small, 2014, 10(7): 1284–1288
27   T. Y. Huang,  Cooperative manipulation and transport of microobjects using multiple helical microcarriers. RSC Adv., 2014, 4(51): 26771–26776
28   F. Qiu, R. Mhanna, L. Zhang, Y. Ding, S. Fujita, B. J. Nelson. Artificial bacterial flagella functionalized with temperature-sensitive liposomes for controlled release. Sens. Actuators B Chem., 2014, 196: 676–681
29   R. Mhanna,  Artificial bacterial flagella for remote-controlled targeted single-cell drug delivery. Small, 2014, 10(10): 1953–1957
30   F. Qiu, S. Fujita, R. Mhanna, L. Zhang, B. R. Simona, B. J. Nelson. Magnetic helical microswimmers functionalized with lipoplexes for targeted gene delivery. Adv. Funct. Mater., 2015, 25(11): 1666–1671
31   A. Servant, F. Qiu, M. Mazza, K. Kostarelos, B. J. Nelson. Controlled in vivo swimming of a swarm of bacteria-like microrobotic flagella. Adv. Mater., 2015, 27(19): 2981–2988
[1] Zhuo Cheng, Lang Qin, Jonathan A. Fan, Liang-Shih Fan. New Insight into the Development of Oxygen Carrier Materials for Chemical Looping Systems[J]. Engineering, 2018, 4(3): 343 -351 .
[2] Jennifer A. Clark, Erik E. Santiso. Carbon Sequestration through CO2 Foam-Enhanced Oil Recovery: A Green Chemistry Perspective[J]. Engineering, 2018, 4(3): 336 -342 .
[3] Andrea Di Maria, Karel Van Acker. Turning Industrial Residues into Resources: An Environmental Impact Assessment of Goethite Valorization[J]. Engineering, 2018, 4(3): 421 -429 .
[4] Lance A. Davis. Falcon Heavy[J]. Engineering, 2018, 4(3): 300 .
[5] Augusta Maria Paci. A Research and Innovation Policy for Sustainable S&T: A Comment on the Essay ‘‘Exploring the Logic and Landscape of the Knowledge System”[J]. Engineering, 2018, 4(3): 306 -308 .
[6] Ning Duan. When Will Speed of Progress in Green Science and Technology Exceed that of Resource Exploitation and Pollutant Generation?[J]. Engineering, 2018, 4(3): 299 .
[7] Jian-guo Li, Kai Zhan. Intelligent Mining Technology for an Underground Metal Mine Based on Unmanned Equipment[J]. Engineering, 2018, 4(3): 381 -391 .
[8] Veena Sahajwalla. Green Processes: Transforming Waste into Valuable Resources[J]. Engineering, 2018, 4(3): 309 -310 .
[9] Junye Wang, Hualin Wang, Yi Fan. Techno-Economic Challenges of Fuel Cell Commercialization[J]. Engineering, 2018, 4(3): 352 -360 .
[10] Raymond RedCorn, Samira Fatemi, Abigail S. Engelberth. Comparing End-Use Potential for Industrial Food-Waste Sources[J]. Engineering, 2018, 4(3): 371 -380 .
[11] Ning Duan, Linhua Jiang, Fuyuan Xu, Ge Zhang. A Non-Contact Original-State Online Real-Time Monitoring Method for Complex Liquids in Industrial Processes[J]. Engineering, 2018, 4(3): 392 -397 .
[12] Keith E. Gubbins, Kai Gu, Liangliang Huang, Yun Long, J. Matthew Mansell, Erik E. Santiso, Kaihang Shi, Małgorzata Ś liwińska-Bartkowiak, Deepti Srivastava. Surface-Driven High-Pressure Processing[J]. Engineering, 2018, 4(3): 311 -320 .
[13] Steff Van Loy, Koen Binnemans, Tom Van Gerven. Mechanochemical-Assisted Leaching of Lamp Phosphors: A Green Engineering Approach for Rare-Earth Recovery[J]. Engineering, 2018, 4(3): 398 -405 .
[14] Robert S. Weber, Johnathan E. Holladay. Modularized Production of Value-Added Products and Fuels from Distributed Waste Carbon-Rich Feedstocks[J]. Engineering, 2018, 4(3): 330 -335 .
[15] Hualin Wang, Pengbo Fu, Jianping Li, Yuan Huang, Ying Zhao, Lai Jiang, Xiangchen Fang, Tao Yang, Zhaohui Huang, Cheng Huang. Separation-and-Recovery Technology for Organic Waste Liquid with a High Concentration of Inorganic Particles[J]. Engineering, 2018, 4(3): 406 -415 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.