Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2015, Vol. 1 Issue (1) : 36 -45
Research |
DARPA Robotics Grand Challenge Participation and Ski-Type Gait for Rough-Terrain Walking
Hongfei Wang,Shimeng Li,Yuan F. Zheng()
Department of Electrical and Computer Engineering, Ohio State University, Columbus, OH 43210, USA

In this paper, we briefly introduce the history of the Defense Advanced Research Projects Agency (DARPA) Grand Challenge programs with particular focus on the 2012 Robotics Challenge. As members of team DRC-HUBO, we propose different approaches for the Rough-Terrain task, such as enlarged foot pedals and a transformation into quadruped walking. We also introduce a new gait for humanoid robot locomotion to improve stability performance, called the Ski-Type gait. We analyze the stability performance of this gait and use the stability margin to choose between two candidate step sequences, Crawl-1 and Crawl-2. Next, we perform a force/torque analysis for the redundant closed-chain system in the Ski-Type gait, and determine the joint torques by minimizing the total energy consumption. Based on the stability and force/torque analysis, we design a cane length to support a feasible and stable Crawl-2 gait on the HUBO2 humanoid robot platform. Finally, we compare our experimental results with biped walking to validate the Ski-Type gait. We also present our team performance in the trials of the Robotics Challenge.

Keywords humanoid robot      DARPA robotics challenge (DRC)      rough-terrain walking      Ski-Type gait     
Corresponding Authors: Yuan F. Zheng   
Just Accepted Date: 31 March 2015   Issue Date: 02 July 2015
E-mail this article
E-mail Alert
Articles by authors
Hongfei Wang
Shimeng Li
Yuan F. Zheng
Cite this article:   
Hongfei Wang,Shimeng Li,Yuan F. Zheng. DARPA Robotics Grand Challenge Participation and Ski-Type Gait for Rough-Terrain Walking[J]. Engineering, 2015, 1(1): 36 -45 .
URL:     OR
1   DARPA.
2   J. Markoff. Google cars drive themselves, in traffic. New York Times, 2010, 9
3   Self-driving car test: Steve mahan.
4   Z. Sun, G. Bebis, R. Miller. On-road vehicle detection: A review. IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28(5): 694–711
5   A. Geiger, P. Lenz, R. Urtasun. Are we ready for autonomous driving? The KITTI vision benchmark suite. In: IEEE Conf. Computer Vision and Pattern Recognition (CVPR). Providence: IEEE, 2012: 3354–3361 
6   A. Broggi, P. Cerri, S. Ghidoni, P  Grisleri, H. G. Jung. A new approach to urban pedestrian detection for automatic braking. IEEE Trans. Intell. Transp. Syst., 2009, 10(4): 594–605
7   C. Urmson, et al. Autonomous driving in urban environments: Boss and the Urban Challenge. J. Field Robot., 2008, 25(8): 425–466 
8   G. Pratt, J. Manzo. The DARPA robotics challenge. IEEE Robot. Autom. Mag., 2013, 20(2): 10–12 
9   Asimo.
10   S. M. Song, K. J. Waldron. Machines that Walk: The Adaptive Suspension Vehicle. Cambridge: MIT Press, 1989
11   K. J. Waldron, V. J. Vohnout, A. Pery, R. B. McGhee. Configuration design of the adaptive suspension vehicle. Int. J. Robot. Res., 1984, 3(2): 37–48
12   R. B. McGhee, G. I. Iswandhi. Adaptive locomotion of a multilegged robot over rough terrain. IEEE Trans. Syst. Man Cybern., 1979, 9(4): 176–182 
13   BigDog.
14   Y. F. Zheng, F. R. Jr Sias. Design and motion control of practical biped robots. Int. J. Robot. Autom., 1988, 3(2): 70–78
15   Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, K. Fujimura. The intelligent ASIMO: System overview and integration. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), vol. 3, 2002: 2478–2483
16   T. Ishida. Development of a small biped entertainment robot QRIO. In: IEEE Int. Symp. Micro-Nanomechatronics and Human Science. IEEE, 2004: 23–28
17   Petman.
18   Atlas.
19   SCHAFT.
20   CHIMP.
21   RoboSimian.
22   Y. F. Zheng, et al. Humanoid robots walking on grass, sands and rocks. In: IEEE Int. Conf. Technologies for Practical Robot Applications (TePRA). Woburn: IEEE, 2013: 1–6
23   H. Kawamoto, S. Lee, S. Kanbe, Y. Sankai. Power assist method for HAL-3 using EMG-based feedback controller. In: IEEE Int. Conf. on Systems, Man and Cybernetics, vol. 2, 2003: 1648–1653 
24   L. Lunenburger, G. Colombo. R. Riener, V. Dietz. Clinical assessments performed during robotic rehabilitation by the gait training robot Lokomat. In: Int. Conf. on Rehabilitation Robotics (ICORR), 2005: 345–348 
25   S. Dubowsky, et al. Pamm—A robotic aid to the elderly for mobility assistance and monitoring: A “helping-hand” for the elderly. In: IEEE Int. Conf. Robotics and Automation (ICRA), vol. 1, 2000: 570–576
26   A. Morris, et al. A robotic walker that provides guidance. In: IEEE Int. Conf. Robotics and Automation (ICRA), vol. 1, 2003: 25–30 
27   R. B. McGhee, A. A. Frank. On the stability properties of quadruped creeping gaits. Math. Biosci., 1968, 3: 331–351 
28   H. Wang, S. Li, Y. Zheng, T. Kim, P. Oh. Ski-type self-balance humanoid walking for rough terrain. In: IEEE Int. Conf. Robotics and Automation (ICRA), vol. 2, 2014: 1620–1626
29   Hubo humanoid robot.
30   J. Kerr, B. Roth. Special grasping configurations with dexterous hands. In: IEEE Int. Conf. Robotics and Automation (ICRA), vol. 3, 1986: 1361–1367 
31   D. E. Orin, S. Y. Oh. Control of force distribution in robotic mechanisms containing closed kinematic chains. J. Dyn. Syst. Meas. Control, 1981, 103(2): 134–141
32   Openhubo.
33   H. Wang, Y. F. Zheng, Y. Jun, P. Oh. DRC-Hubo walking on rough terrains. In: IEEE Int. Conf. Technologies for Practical Robot Applications (TePRA). Woburn: IEEE, 2014: 1–6
[1] Holger Krueger. Standardization for Additive Manufacturing in Aerospace[J]. Engineering, 2017, 3(5): 585 .
[2] Joe A. Sestak Jr.. High School Students from 157 Countries Convene to Address One of the 14 Grand Challenges for Engineering: Access to Clean Water[J]. Engineering, 2017, 3(5): 583 -584 .
[3] Lance A. Davis. Climate Agreement—Revisited[J]. Engineering, 2017, 3(5): 578 -579 .
[4] Ben A. Wender, M. Granger Morgan, K. John Holmes. Enhancing the Resilience of Electricity Systems[J]. Engineering, 2017, 3(5): 580 -582 .
[5] Jin-Xun Liu, Peng Wang, Wayne Xu, Emiel J. M. Hensen. Particle Size and Crystal Phase Effects in Fischer-Tropsch Catalysts[J]. Engineering, 2017, 3(4): 467 -476 .
[6] Luis Ribeiro e Sousa, Tiago Miranda, Rita Leal e Sousa, Joaquim Tinoco. The Use of Data Mining Techniques in Rockburst Risk Assessment[J]. Engineering, 2017, 3(4): 552 -558 .
[7] Maggie Bartolomeo. Third Global Grand Challenges Summit for Engineering[J]. Engineering, 2017, 3(4): 434 -435 .
[8] Michael Powalla, Stefan Paetel, Dimitrios Hariskos, Roland Wuerz, Friedrich Kessler, Peter Lechner, Wiltraud Wischmann, Theresa Magorian Friedlmeier. Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2[J]. Engineering, 2017, 3(4): 445 -451 .
[9] Raffaella Ocone. Reconciling “Micro” and “Macro” through Meso-Science[J]. Engineering, 2017, 3(3): 281 -282 .
[10] Baoning Zong, Bin Sun, Shibiao Cheng, Xuhong Mu, Keyong Yang, Junqi Zhao, Xiaoxin Zhang, Wei Wu. Green Production Technology of the Monomer of Nylon-6: Caprolactam[J]. Engineering, 2017, 3(3): 379 -384 .
[11] Pengcheng Xu, Yong Jin, Yi Cheng. Thermodynamic Analysis of the Gasification of Municipal Solid Waste[J]. Engineering, 2017, 3(3): 416 -422 .
[12] Lei Xu, Jinhui Peng, Hailong Bai, C. Srinivasakannan, Libo Zhang, Qingtian Wu, Zhaohui Han, Shenghui Guo, Shaohua Ju, Li Yang. Application of Microwave Melting for the Recovery of Tin Powder[J]. Engineering, 2017, 3(3): 423 -427 .
[13] Ee Teng Kho, Salina Jantarang, Zhaoke Zheng, Jason Scott, Rose Amal. Harnessing the Beneficial Attributes of Ceria and Titania in a Mixed-Oxide Support for Nickel-Catalyzed Photothermal CO2 Methanation[J]. Engineering, 2017, 3(3): 393 -401 .
[14] Ke Dang, Tuo Wang, Chengcheng Li, Jijie Zhang, Shanshan Liu, Jinlong Gong. Improved Oxygen Evolution Kinetics and Surface States Passivation of Ni-Bi Co-Catalyst for a Hematite Photoanode[J]. Engineering, 2017, 3(3): 285 -289 .
[15] Mu Xiao, Songcan Wang, Supphasin Thaweesak, Bin Luo, Lianzhou Wang. Tantalum (Oxy)Nitride: Narrow Bandgap Photocatalysts for Solar Hydrogen Generation[J]. Engineering, 2017, 3(3): 365 -378 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
Today's visits ;Accumulated visits . 京ICP备11030251号-2