Please wait a minute...
Submit  |   Chinese  | 
 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2015, Vol. 1 Issue (1) : 27 -35     https://doi.org/10.15302/J-ENG-2015007
Research |
Architecture and Software Design for a Service Robot in an Elderly-Care Scenario
Norman Hendrich(),Hannes Bistry,Jianwei Zhang
Computer Science Department, University of Hamburg, Hamburg D-22527, Germany
Abstract
Abstract  

Systems for ambient assisted living (AAL) that integrate service robots with sensor networks and user monitoring can help elderly people with their daily activities, allowing them to stay in their homes and live active lives for as long as possible. In this paper, we outline the AAL system currently developed in the European project Robot-Era, and describe the engineering aspects and the service-oriented software architecture of the domestic robot, a service robot with advanced manipulation capabilities. Based on the robot operating system (ROS) middleware, our software integrates a large set of advanced algorithms for navigation, perception, and manipulation. In tests with real end users, the performance and acceptability of the platform are evaluated.

Keywords service robots      ambient assisted living      manipulation and grasping      user study     
Fund: 
Corresponding Authors: Norman Hendrich   
Just Accepted Date: 31 March 2015   Issue Date: 02 July 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Norman Hendrich
Hannes Bistry
Jianwei Zhang
Cite this article:   
Norman Hendrich,Hannes Bistry,Jianwei Zhang. Architecture and Software Design for a Service Robot in an Elderly-Care Scenario[J]. Engineering, 2015, 1(1): 27 -35 .
URL:  
http://engineering.org.cn/EN/10.15302/J-ENG-2015007     OR     http://engineering.org.cn/EN/Y2015/V1/I1/27
References
1   I. Conrad, S. Glende, L. Krezdorn, L. Trieste, G. Turchetti. D9.4, Second report on services, business and marketing models for Robot-Era services, project report, 2015, www.robot-era.eu
2   F. Cavallo, M. Aquilano, M. C. Carrozza, P. Dario. Robot-era project: The vision of 3D service robotics. Gerontechnology, 2012, 11(2): 364
3   F. Marcellini,  Report on the robotic services analysis with respect to elderly users, project report, 2012, www.robot-era.eu
4   N. J. Nilsson. Shakey the Robot (Technical Note 323). Menlo Park, California: SRI International, Artificial Intelligence Center, 1984
5   R. Brooks. A robust layered control system for a mobile robot. IEEE J. Robot. Autom., 1986, 2(1): 14–23
6   T. H. J. Collett, B. A. MacDonald, B. P. Gerkey. Player 2.0: Toward a practical robot programming framework. In: Proceedings of Australasian Conference on Robotics and Automation (ACRA 05). IEEE, 2005: 1–9
7   G. Metta, P. Fitzpatrick, L. Natale. YARP: Yet another robot platform. Int. J. Adv. Robot. Syst., 2006, 3(1): 43–48
8   M. Quigley,  ROS: An open-source Robot Operating System. In: International Conference on Robotics and Automation (ICRA) Workshop on Open-Source Software, 2009
9   E. Einhorn, T. Langner, R. Stricker, C. Martin, H. M. Gross. MIRA-middleware for robotic applications. In: Proceedings of 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2012), 2012: 2591–2598
10   R. D. Schraft, J. Neugebauer, C. Schaeffer, T. May. Care-O-bot®: Ein technisches Hilfssystem für unterstützungs- und pflegebedürftige Personen im häuslichen Bereich. In: H. Wörn, R. Dillmann, D. Henrich, eds. Autonome Mobile Systeme 14. Berlin, Heidelberg: Springer, 1998: 234–244
11   M. Hans, B. Graf. Robotic home assistant Care-O-bot II. In: E. Prassler, , eds. Advances in Human-Robot Interaction. Berlin, Heidelberg: Springer, 2004: 371–384
12   C. Parlitz, M. Hägele, P. Klein, J. Seifert, K. Dautenhahn. Caro-O-bot 3—Rationale for human-robot interaction design. In: Proceedings of 39th International Symposium on Robotics (ISR), 2008: 275–280
13   M. Hans, W. Baum. Concept of a hybrid architecture for Care-O-bot. In: Proceedings of 10th IEEE International Workshop on Robot and Human Interactive Communication. IEEE, 2001: 407–411
14   T. Morita, H. Iwata, S. Sugano. Development of human symbiotic robot: WENDY. In: Proceedings of 1999 IEEE International Conference on Robotics and Automation, vol. 4. IEEE, 1999: 3183–3188
15   Willow Garage Inc. Robot for research and innovation. https://www.willowgarage.com/pages/pr2/overview
16   S. Cousins. ROS on the PR2 [ROS Topics]. Robot. Autom. Mag., IEEE, 2010, 17(3): 23–25
17   A. Hermann,  Hardware and software architecture of the bimanual mobile manipulation robot HoLLiE and its actuated upper body. In: Proceedings of 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). IEEE, 2013: 286–292
18   MetraLabs GmbH. Scitos G5 mobile platform. metralabs.com/index.php?option=com_content&view=article&id=70&Itemid=64
19   F. Cavallo. Improving domiciliary robotic services by integrating the ASTRO robot in an AmI infrastructure. In: F. Röhrbein, G. Veiga, C. Natale, eds. Gearing Up and Accelerating Cross—Fertilization between Academic and Industrial Robotics Research in Europe. Springer, 2014: 267–282
20   Schunk Gmbh & Co. KG. Powerball lightweight arm LWA 4P. http://mobile.schunk-microsite.com/en/produkte/produkte/powerball-lightweight-arm-lwa-4p.html
21   Kinova Robotics, Kinova Jaco Research Edition. kinovarobotics.com/products/jaco-researchedition/
22   Schunk Gmbh & Co. KG. Dextrous lightweight arm LWA 4D. http://mobile.schunk-microsite.com/en/produkte/produkte/dextrous-lightweight-arm-lwa-4d.html
23   BionicRobotics GmbH. Bionic robotics: Biorob arm. http://www.bionic-robotics.de/en/products/biorob-arm.html
24   Universal Robots. UR5 arm. www.universal-robots.com/GB/Products/
25   V. Maheu, J. Frappier, P. S. Archambault, F. Routhier. Evaluation of the JACO robotic arm: Clinico-economic study for powered wheelchair users with upper-extremity disabilities. In: Proceedings of 2011 IEEE International Conference on Rehabilitation Robotics (ICORR). IEEE, 2011: 1–5
26   A. Saffiotti, M. Broxvall. PEIS ecologies: Ambient intelligence meets autonomous robotics. In: Proceedings of the International Conference on Smart Objects and Ambient Intelligence, 2005: 277–281
27   M. Broxvall, M. Gritti, A. Saffiotti, B. S. Beo, Y. J. Cho. PEIS ecology: Integrating robots into smart environments. In: Proceedings of 2006 IEEE International Conference on Robotics and Automation (ICRA), 2006: 212–218
28   M. Di Rocco,  A planner for ambient assisted living: From high-level reasoning to low-level robot execution and back. In: AAAI Spring Symposium “Qualitative Representations for Robots”, 2014: 10–17
29   N. Hendrich, H. Bistry, B. Adler, J. Zhang. User-driven software design for an elderly care service robot. In: Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare, 2014: 142–149
30   I. Sucan. Universal robot description format. http://wiki.ros.org/urdf
31   E. Marder-Eppstein, V. Pradeep. ROS actionlib. http://wiki.ros.org/actionlib
32   D. G. Lowe. Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2. IEEE, 1999: 1150–1157
33   E. Olson. AprilTag: A robust and flexible visual fiducial system. In: Proceedings of 2011 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2011: 3400–3407
34   J. R. Lewis, J. Sauro. The factor structure of the system usability scale. In: M. Kurosu, ed. Human Centered Design. Berlin, Heidelberg: Springer, 2009: 94–103
35   S. McLellan, A. Muddimer, S. C. Peres. The effect of experience on System Usability Scale ratings. J. Usability Stud., 2012, 7(2): 56–67
36   F. Cavallo, D8.2 Report on results obtained in the first cycle of the Robot-Era experimentation, project report, 2014. www.robot-era.eu
37   F. Pecora,  D2.8 Second report on the S/T requirements of the Robot-Era components, project report, 2015. www.robot-era.eu
Related
[1] Zhuo Cheng, Lang Qin, Jonathan A. Fan, Liang-Shih Fan. New Insight into the Development of Oxygen Carrier Materials for Chemical Looping Systems[J]. Engineering, 2018, 4(3): 343 -351 .
[2] Jennifer A. Clark, Erik E. Santiso. Carbon Sequestration through CO2 Foam-Enhanced Oil Recovery: A Green Chemistry Perspective[J]. Engineering, 2018, 4(3): 336 -342 .
[3] Andrea Di Maria, Karel Van Acker. Turning Industrial Residues into Resources: An Environmental Impact Assessment of Goethite Valorization[J]. Engineering, 2018, 4(3): 421 -429 .
[4] Lance A. Davis. Falcon Heavy[J]. Engineering, 2018, 4(3): 300 .
[5] Augusta Maria Paci. A Research and Innovation Policy for Sustainable S&T: A Comment on the Essay ‘‘Exploring the Logic and Landscape of the Knowledge System”[J]. Engineering, 2018, 4(3): 306 -308 .
[6] Ning Duan. When Will Speed of Progress in Green Science and Technology Exceed that of Resource Exploitation and Pollutant Generation?[J]. Engineering, 2018, 4(3): 299 .
[7] Jian-guo Li, Kai Zhan. Intelligent Mining Technology for an Underground Metal Mine Based on Unmanned Equipment[J]. Engineering, 2018, 4(3): 381 -391 .
[8] Veena Sahajwalla. Green Processes: Transforming Waste into Valuable Resources[J]. Engineering, 2018, 4(3): 309 -310 .
[9] Junye Wang, Hualin Wang, Yi Fan. Techno-Economic Challenges of Fuel Cell Commercialization[J]. Engineering, 2018, 4(3): 352 -360 .
[10] Raymond RedCorn, Samira Fatemi, Abigail S. Engelberth. Comparing End-Use Potential for Industrial Food-Waste Sources[J]. Engineering, 2018, 4(3): 371 -380 .
[11] Ning Duan, Linhua Jiang, Fuyuan Xu, Ge Zhang. A Non-Contact Original-State Online Real-Time Monitoring Method for Complex Liquids in Industrial Processes[J]. Engineering, 2018, 4(3): 392 -397 .
[12] Keith E. Gubbins, Kai Gu, Liangliang Huang, Yun Long, J. Matthew Mansell, Erik E. Santiso, Kaihang Shi, Małgorzata Ś liwińska-Bartkowiak, Deepti Srivastava. Surface-Driven High-Pressure Processing[J]. Engineering, 2018, 4(3): 311 -320 .
[13] Steff Van Loy, Koen Binnemans, Tom Van Gerven. Mechanochemical-Assisted Leaching of Lamp Phosphors: A Green Engineering Approach for Rare-Earth Recovery[J]. Engineering, 2018, 4(3): 398 -405 .
[14] Robert S. Weber, Johnathan E. Holladay. Modularized Production of Value-Added Products and Fuels from Distributed Waste Carbon-Rich Feedstocks[J]. Engineering, 2018, 4(3): 330 -335 .
[15] Hualin Wang, Pengbo Fu, Jianping Li, Yuan Huang, Ying Zhao, Lai Jiang, Xiangchen Fang, Tao Yang, Zhaohui Huang, Cheng Huang. Separation-and-Recovery Technology for Organic Waste Liquid with a High Concentration of Inorganic Particles[J]. Engineering, 2018, 4(3): 406 -415 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
京ICP备11030251号-2

 Engineering