Please wait a minute...
Submit  |   Chinese  | 
 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2015, Vol. 1 Issue (1) : 85 -89     https://doi.org/10.15302/J-ENG-2015012
Research |
Development Trends in Additive Manufacturing and 3D Printing
Bingheng Lu(),Dichen Li,Xiaoyong Tian
Xi’an Jiaotong University, Xi’an 710049, China
Abstract
Abstract  

Additive manufacturing and 3D printing technology have been developing rapidly in the last 30 years, and indicate great potential for future development. The promising future of this technology makes its impact on traditional industry unpredictable. 3D printing will propel the revolution of fabrication modes forward, and bring in a new era for customized fabrication by realizing the five “any”s: use of almost any material to fabricate any part, in any quantity and any location, for any industrial field. Innovations in material, design, and fabrication processes will be inspired by the merging of 3D-printing technology and processes with traditional manufacturing processes. Finally, 3D printing will become as valuable for manufacturing industries as equivalent and subtractive manufacturing processes.

Keywords additive manufacturing      3D printing      fabrication modes      customized fabrication      innovative design     
Fund: 
Corresponding Authors: Bingheng Lu   
Just Accepted Date: 31 March 2015   Issue Date: 03 July 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bingheng Lu
Dichen Li
Xiaoyong Tian
Cite this article:   
Bingheng Lu,Dichen Li,Xiaoyong Tian. Development Trends in Additive Manufacturing and 3D Printing[J]. Engineering, 2015, 1(1): 85 -89 .
URL:  
http://engineering.org.cn/EN/10.15302/J-ENG-2015012     OR     http://engineering.org.cn/EN/Y2015/V1/I1/85
References
1   T. Wohlers. Wohlers Report 2013: Additive Manufacturing and 3D Printing State of the Industry. Annual Worldwide Progress Report. America: Wohlers Associates, Inc., 2013
2   Y. M.  Xie. Designing orthotropic materials for negative or zero compressibility. Int. J. Solids Struct., 2014, 51(23¯24): 4038–4051
3   A. Sutradhar, J. Park, D. Carrau, M. J.  Miller. Experimental validation of 3D printed patient-specific implants using digital image correlation and finite element analysis. Comput. Biol. Med., 2014, 52: 8–17
4   R. P.  Hoyt. SpiderFab: An architecture for self-fabricating space systems. In: AIAA SPACE 2013 Conference and Exposition, 2014: 1–17
5   K. Short, D. Van Buren. Printable spacecraft: Flexible electronic platforms for NASA missions. Pasadena, California: California Institute of Technology, 2012
6   G. Cesaretti, E. Dini, X. De Kestelier, V. Colla, L. Pambaguian. Building components for an outpost on the Lunar soil by means of a novel 3D printing technology. Acta Astronaut., 2014, 93: 430–450
7   General Electric Company. Advanced manufacturing is reinventing the way we work, 2014. http://www.ge.com/stories/advanced-manufacturing
8   K. Bullis. A more efficient jet engine is made from lighter parts, some 3-D Printed. MIT Technology Review, 2013-<month>05</month>-<day>14</day>
9   J. Bargmann. Urbee 2, the 3D-printed car that will drive across the country, 2013. http://www.popularmechanics.com/
10   P. Olson. Airbus explores building planes with Giant 3D Printers. Forbes, 2012−<month>07</month>−<day>11</day>
11   K. Wang, Y. H.  Chang, Y. W.  Chen, C. Zhang, B. Wang. Designable dual-material auxetic metamaterials using three-dimensional printing. Mater. Design, 2015, 67: 159–164
12   X. Ye, J. Long, Z. Lin, H. Zhang, H. Zhu, M. Zhong. Direct laser fabrication of large-area and patterned graphene at room temperature. Carbon, 2014, 68: 784–790
13   D. Zhao, T. Liu, M. Zhang, R. Liang, B. Wang. Fabrication and characterization of aerosol-jet printed strain sensors for multifunctional composite structures. Smart Mater. Struct., 2012, 21(11): 115008
14   L. Kratochwill. NASA tests largest 3-D printed rocket part ever: 3-D printed engines could support human missions to deep space. Popular Science, 2013−<month>08</month>−<day>29</day>
15   H. Wang, L. Zhang, A. Li, L. Cai, H. Tang. Rapid solidification laser processing and forming of advanced aeronautical metallic materials. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(10): 962–967
16   DMG MORI. LASER TEC 65 3D. 2014-<month>11</month>-<day>13</day>. http://www.3D.dmgmori.com
17   Al<?Pub Caret?>ec. GE 3D prints and test fires a fully functional miniature jet engine. 2014−<month>11</month>−<day>12</day>. http://www.3ders.org/articles/20141112-ge-3d-prints-and-test-fires-a-fully-functional-miniature-jet-engine.html
Related
[1] Shutian Liu, Quhao Li, Junhuan Liu, Wenjiong Chen, Yongcun Zhang. A Realization Method for Transforming a Topology Optimization Design into Additive Manufacturing Structures[J]. Engineering, 2018, 4(2): 277 -285 .
[2] Quy Bau Nguyen, Mui Ling Sharon Nai, Zhiguang Zhu, Chen-Nan Sun, Jun Wei, Wei Zhou. Characteristics of Inconel Powders for Powder-Bed Additive Manufacturing[J]. Engineering, 2017, 3(5): 695 -700 .
[3] Pinlian Han. Additive Design and Manufacturing of Jet Engine Parts[J]. Engineering, 2017, 3(5): 648 -652 .
[4] Kan Wang, Chia-Che Ho, Chuck Zhang, Ben Wang. A Review on the 3D Printing of Functional Structures for Medical Phantoms and Regenerated Tissue and Organ Applications[J]. Engineering, 2017, 3(5): 653 -662 .
[5] Patcharapit Promoppatum, Shi-Chune Yao, P. Chris Pistorius, Anthony D. Rollett. A Comprehensive Comparison of the Analytical and Numerical Prediction of the Thermal History and Solidification Microstructure of Inconel 718 Products Made by Laser Powder-Bed Fusion[J]. Engineering, 2017, 3(5): 685 -694 .
[6] Wentao Yan, Ya Qian, Weixin Ma, Bin Zhou, Yongxing Shen, Feng Lin. Modeling and Experimental Validation of the Electron Beam Selective Melting Process[J]. Engineering, 2017, 3(5): 701 -707 .
[7] Dongdong Gu, Chenglong Ma, Mujian Xia, Donghua Dai, Qimin Shi. A Multiscale Understanding of the Thermodynamic and Kinetic Mechanisms of Laser Additive Manufacturing[J]. Engineering, 2017, 3(5): 675 -684 .
[8] Zhen Zhang, Peng Yan, Guangbo Hao. A Large Range Flexure-Based Servo System Supporting Precision Additive Manufacturing[J]. Engineering, 2017, 3(5): 708 -715 .
[9] Amelia Yilin Lee, Jia An, Chee Kai Chua. Two-Way 4D Printing: A Review on the Reversibility of 3D-Printed Shape Memory Materials[J]. Engineering, 2017, 3(5): 663 -674 .
[10] Anders Clausen, Niels Aage, Ole Sigmund. Exploiting Additive Manufacturing Infill in Topology Optimization for Improved Buckling Load[J]. Engineering, 2016, 2(2): 250 -257 .
[11] Jun Yang,Yang Yang,Zhizhu He,Bowei Chen,Jing Liu. A Personal Desktop Liquid-Metal Printer as a Pervasive Electronics Manufacturing Tool for Society in the Near Future[J]. Engineering, 2015, 1(4): 506 -512 .
[12] Jia An, Joanne Ee Mei Teoh, Ratima Suntornnond, Chee Kai Chua. Design and 3D Printing of Scaffolds and Tissues[J]. Engineering, 2015, 1(2): 261 -268 .
[13] Chao Guo, Wenjun Ge, Feng Lin. Dual-Material Electron Beam Selective Melting: Hardware Development and Validation Studies[J]. Engineering, 2015, 1(1): 124 -130 .
[14] Brian Derby. Additive Manufacture of Ceramics Components by Inkjet Printing[J]. Engineering, 2015, 1(1): 113 -123 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
京ICP备11030251号-2

 Engineering