Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2015, Vol. 1 Issue (1) : 66 -72
Research |
Vibration-Driven Microrobot Positioning Methodologies for Nonholonomic Constraint Compensation
Kostas Vlachos1,2,Dimitris Papadimitriou1,Evangelos Papadopoulos1,()
1. Department of Mechanical Engineering, National Technical University of Athens, 15780 Zografou, Athens, Greece
2. Present address Department of Computer Science and Engineering, University of Ioannina, 45110 Ioannina, Greece

This paper presents the formulation and practical implementation of positioning methodologies that compensate for the nonholonomic constraints of a mobile microrobot that is driven by two vibrating direct current (DC) micromotors. The open-loop and closed-loop approaches described here add the capability for net sidewise displacements of the microrobotic platform. A displacement is achieved by the execution of a number of repeating steps that depend on the desired displacement, the speed of the micromotors, and the elapsed time. Simulation and experimental results verified the performance of the proposed methodologies.

Keywords microrobotics      vibration micromotor      actuation nonholonomic planning      nonholonomic constraints compensation     
Corresponding Authors: Evangelos Papadopoulos   
Just Accepted Date: 31 March 2015   Issue Date: 02 July 2015
E-mail this article
E-mail Alert
Articles by authors
Kostas Vlachos
Dimitris Papadimitriou
Evangelos Papadopoulos
Cite this article:   
Kostas Vlachos,Dimitris Papadimitriou,Evangelos Papadopoulos. Vibration-Driven Microrobot Positioning Methodologies for Nonholonomic Constraint Compensation[J]. Engineering, 2015, 1(1): 66 -72 .
URL:     OR
1   A. Kortschack, A. Shirinov, T. Trüper, S. Fatikow. Development of mobile versatile nanohandling microrobots: Design, driving principles, haptic control. Robotica, 2005, 23(4): 419–434 
2   J. M. Breguet, R. Clavel. Stick and slip actuators: Design, control, performances and applications. In: Proceedings of the 1998 Int. Symposium on Micro-mechatronics and Human Science(MHS). Nagoya: IEEE, 1998: 89–95 
3   F. Schmoeckel, S. Fatikow. Smart flexible microrobots for scanning electron microscope (SEM) applications. J. Intell. Mater. Syst. Struct., 2000, 11(3): 191–198 
4   B. Roland, Z. Wolfgang, C. Alain. Inertial drives for micro- and nanorobots: Analytical study. In: L. E. Parker, eds. Proceedings of SPIE Photonics East ‘95: Proc. Microrobotics and Micromachanical Systems Symposium, vol 2593. Philadelphia, 1995: 89–97
5   S. Martel, et al. Three-legged wireless miniature robots for mass-scale operations at the sub-atomic scale. In: Proceedings of 2001 IEEE International Conference on Robotics & Automation. Seoul: IEEE, 2001: 3423–3428
6   J. Brufau, et al. MICRON: Small autonomous robot for cell manipulation applications. In: Proceedings of the IEEE International Conference on Robotics & Automation. IEEE, 2005: 844–849 
7   M. Karpelson, G. Y. Wei, R. J. Wood. Driving high voltage piezoelectric actuators in microrobotic applications. Sens. Actuators A Phys., 2012, 4(176): 78–89 
8   P. Vartholomeos, E. Papadopoulos. Dynamics, design and simulation of a novel microrobotic platform employing vibration microactuators. Journal of Dynamic Systems, Measurement and Control, 2006, 128(1): 122–133
9   R. W. Brockett. Control theory and singular Riemannian geometry. In: P. Hilton, G. Young, eds. New Directions in Applied Mathematics. New York: Springer-Verlag, 1981: 11–27
10   J. P. Laumond. Feasible trajectories for mobile robots with kinematic and environment constraints. In: Proceedings of an International Conference on Intelligent Autonomous Systems, 1986: 346–354
11   J. Barraquand, J. C. Latombe. On nonholonomic mobile robots and optimal maneuvering. In: Proceedings of the IEEE International Symposium on Intelligent Control. Albany: IEEE, 1989: 340–347
12   J. A. Reeds, L. A. Shepp. Optimal paths for a car that goes both forwards and backwards. Pac. J. Math., 1990, 145(2): 367–393
13   L. Gurvits, Z. Li. Smooth time-periodic feedback solutions for nonholonomic motion planning. In: Z. Li, J. F. Canny, eds. Nonholonomic Motion Planning. New York: Springer, 1993: 53–108
14   R. M. Murray, S. S. Sastry. Nonholonomic motion planning: Steering using sinusoids. IEEE Trans. Automat. Contr., 1993, 38(5): 700–716
15   K. Vlachos, P. Vartholomeos, E. Papadopoulos. A haptic tele-manipulation environment for a vibration-driven micromechatronic device. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics Systems. Zurich: IEEE, 2007: 1–6
[1] Holger Krueger. Standardization for Additive Manufacturing in Aerospace[J]. Engineering, 2017, 3(5): 585 .
[2] Joe A. Sestak Jr.. High School Students from 157 Countries Convene to Address One of the 14 Grand Challenges for Engineering: Access to Clean Water[J]. Engineering, 2017, 3(5): 583 -584 .
[3] Lance A. Davis. Climate Agreement—Revisited[J]. Engineering, 2017, 3(5): 578 -579 .
[4] Ben A. Wender, M. Granger Morgan, K. John Holmes. Enhancing the Resilience of Electricity Systems[J]. Engineering, 2017, 3(5): 580 -582 .
[5] Jin-Xun Liu, Peng Wang, Wayne Xu, Emiel J. M. Hensen. Particle Size and Crystal Phase Effects in Fischer-Tropsch Catalysts[J]. Engineering, 2017, 3(4): 467 -476 .
[6] Luis Ribeiro e Sousa, Tiago Miranda, Rita Leal e Sousa, Joaquim Tinoco. The Use of Data Mining Techniques in Rockburst Risk Assessment[J]. Engineering, 2017, 3(4): 552 -558 .
[7] Maggie Bartolomeo. Third Global Grand Challenges Summit for Engineering[J]. Engineering, 2017, 3(4): 434 -435 .
[8] Michael Powalla, Stefan Paetel, Dimitrios Hariskos, Roland Wuerz, Friedrich Kessler, Peter Lechner, Wiltraud Wischmann, Theresa Magorian Friedlmeier. Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2[J]. Engineering, 2017, 3(4): 445 -451 .
[9] Raffaella Ocone. Reconciling “Micro” and “Macro” through Meso-Science[J]. Engineering, 2017, 3(3): 281 -282 .
[10] Baoning Zong, Bin Sun, Shibiao Cheng, Xuhong Mu, Keyong Yang, Junqi Zhao, Xiaoxin Zhang, Wei Wu. Green Production Technology of the Monomer of Nylon-6: Caprolactam[J]. Engineering, 2017, 3(3): 379 -384 .
[11] Pengcheng Xu, Yong Jin, Yi Cheng. Thermodynamic Analysis of the Gasification of Municipal Solid Waste[J]. Engineering, 2017, 3(3): 416 -422 .
[12] Lei Xu, Jinhui Peng, Hailong Bai, C. Srinivasakannan, Libo Zhang, Qingtian Wu, Zhaohui Han, Shenghui Guo, Shaohua Ju, Li Yang. Application of Microwave Melting for the Recovery of Tin Powder[J]. Engineering, 2017, 3(3): 423 -427 .
[13] Ee Teng Kho, Salina Jantarang, Zhaoke Zheng, Jason Scott, Rose Amal. Harnessing the Beneficial Attributes of Ceria and Titania in a Mixed-Oxide Support for Nickel-Catalyzed Photothermal CO2 Methanation[J]. Engineering, 2017, 3(3): 393 -401 .
[14] Ke Dang, Tuo Wang, Chengcheng Li, Jijie Zhang, Shanshan Liu, Jinlong Gong. Improved Oxygen Evolution Kinetics and Surface States Passivation of Ni-Bi Co-Catalyst for a Hematite Photoanode[J]. Engineering, 2017, 3(3): 285 -289 .
[15] Mu Xiao, Songcan Wang, Supphasin Thaweesak, Bin Luo, Lianzhou Wang. Tantalum (Oxy)Nitride: Narrow Bandgap Photocatalysts for Solar Hydrogen Generation[J]. Engineering, 2017, 3(3): 365 -378 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
Today's visits ;Accumulated visits . 京ICP备11030251号-2