Please wait a minute...
Submit  |   Chinese  | 
 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2015, Vol. 1 Issue (1) : 66 -72     https://doi.org/10.15302/J-ENG-2015016
Research |
Vibration-Driven Microrobot Positioning Methodologies for Nonholonomic Constraint Compensation
Kostas Vlachos1,2,Dimitris Papadimitriou1,Evangelos Papadopoulos1,()
1. Department of Mechanical Engineering, National Technical University of Athens, 15780 Zografou, Athens, Greece
2. Present address Department of Computer Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
Abstract
Abstract  

This paper presents the formulation and practical implementation of positioning methodologies that compensate for the nonholonomic constraints of a mobile microrobot that is driven by two vibrating direct current (DC) micromotors. The open-loop and closed-loop approaches described here add the capability for net sidewise displacements of the microrobotic platform. A displacement is achieved by the execution of a number of repeating steps that depend on the desired displacement, the speed of the micromotors, and the elapsed time. Simulation and experimental results verified the performance of the proposed methodologies.

Keywords microrobotics      vibration micromotor      actuation nonholonomic planning      nonholonomic constraints compensation     
Fund: 
Corresponding Authors: Evangelos Papadopoulos   
Just Accepted Date: 31 March 2015   Issue Date: 02 July 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kostas Vlachos
Dimitris Papadimitriou
Evangelos Papadopoulos
Cite this article:   
Kostas Vlachos,Dimitris Papadimitriou,Evangelos Papadopoulos. Vibration-Driven Microrobot Positioning Methodologies for Nonholonomic Constraint Compensation[J]. Engineering, 2015, 1(1): 66 -72 .
URL:  
http://engineering.org.cn/EN/10.15302/J-ENG-2015016     OR     http://engineering.org.cn/EN/Y2015/V1/I1/66
References
1   A. Kortschack, A. Shirinov, T. Trüper, S. Fatikow. Development of mobile versatile nanohandling microrobots: Design, driving principles, haptic control. Robotica, 2005, 23(4): 419–434 
2   J. M. Breguet, R. Clavel. Stick and slip actuators: Design, control, performances and applications. In: Proceedings of the 1998 Int. Symposium on Micro-mechatronics and Human Science(MHS). Nagoya: IEEE, 1998: 89–95 
3   F. Schmoeckel, S. Fatikow. Smart flexible microrobots for scanning electron microscope (SEM) applications. J. Intell. Mater. Syst. Struct., 2000, 11(3): 191–198 
4   B. Roland, Z. Wolfgang, C. Alain. Inertial drives for micro- and nanorobots: Analytical study. In: L. E. Parker, eds. Proceedings of SPIE Photonics East ‘95: Proc. Microrobotics and Micromachanical Systems Symposium, vol 2593. Philadelphia, 1995: 89–97
5   S. Martel, et al. Three-legged wireless miniature robots for mass-scale operations at the sub-atomic scale. In: Proceedings of 2001 IEEE International Conference on Robotics & Automation. Seoul: IEEE, 2001: 3423–3428
6   J. Brufau, et al. MICRON: Small autonomous robot for cell manipulation applications. In: Proceedings of the IEEE International Conference on Robotics & Automation. IEEE, 2005: 844–849 
7   M. Karpelson, G. Y. Wei, R. J. Wood. Driving high voltage piezoelectric actuators in microrobotic applications. Sens. Actuators A Phys., 2012, 4(176): 78–89 
8   P. Vartholomeos, E. Papadopoulos. Dynamics, design and simulation of a novel microrobotic platform employing vibration microactuators. Journal of Dynamic Systems, Measurement and Control, 2006, 128(1): 122–133
9   R. W. Brockett. Control theory and singular Riemannian geometry. In: P. Hilton, G. Young, eds. New Directions in Applied Mathematics. New York: Springer-Verlag, 1981: 11–27
10   J. P. Laumond. Feasible trajectories for mobile robots with kinematic and environment constraints. In: Proceedings of an International Conference on Intelligent Autonomous Systems, 1986: 346–354
11   J. Barraquand, J. C. Latombe. On nonholonomic mobile robots and optimal maneuvering. In: Proceedings of the IEEE International Symposium on Intelligent Control. Albany: IEEE, 1989: 340–347
12   J. A. Reeds, L. A. Shepp. Optimal paths for a car that goes both forwards and backwards. Pac. J. Math., 1990, 145(2): 367–393
13   L. Gurvits, Z. Li. Smooth time-periodic feedback solutions for nonholonomic motion planning. In: Z. Li, J. F. Canny, eds. Nonholonomic Motion Planning. New York: Springer, 1993: 53–108
14   R. M. Murray, S. S. Sastry. Nonholonomic motion planning: Steering using sinusoids. IEEE Trans. Automat. Contr., 1993, 38(5): 700–716
15   K. Vlachos, P. Vartholomeos, E. Papadopoulos. A haptic tele-manipulation environment for a vibration-driven micromechatronic device. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics Systems. Zurich: IEEE, 2007: 1–6
Related
[1] Zhuo Cheng, Lang Qin, Jonathan A. Fan, Liang-Shih Fan. New Insight into the Development of Oxygen Carrier Materials for Chemical Looping Systems[J]. Engineering, 2018, 4(3): 343 -351 .
[2] Jennifer A. Clark, Erik E. Santiso. Carbon Sequestration through CO2 Foam-Enhanced Oil Recovery: A Green Chemistry Perspective[J]. Engineering, 2018, 4(3): 336 -342 .
[3] Andrea Di Maria, Karel Van Acker. Turning Industrial Residues into Resources: An Environmental Impact Assessment of Goethite Valorization[J]. Engineering, 2018, 4(3): 421 -429 .
[4] Lance A. Davis. Falcon Heavy[J]. Engineering, 2018, 4(3): 300 .
[5] Augusta Maria Paci. A Research and Innovation Policy for Sustainable S&T: A Comment on the Essay ‘‘Exploring the Logic and Landscape of the Knowledge System”[J]. Engineering, 2018, 4(3): 306 -308 .
[6] Ning Duan. When Will Speed of Progress in Green Science and Technology Exceed that of Resource Exploitation and Pollutant Generation?[J]. Engineering, 2018, 4(3): 299 .
[7] Jian-guo Li, Kai Zhan. Intelligent Mining Technology for an Underground Metal Mine Based on Unmanned Equipment[J]. Engineering, 2018, 4(3): 381 -391 .
[8] Veena Sahajwalla. Green Processes: Transforming Waste into Valuable Resources[J]. Engineering, 2018, 4(3): 309 -310 .
[9] Junye Wang, Hualin Wang, Yi Fan. Techno-Economic Challenges of Fuel Cell Commercialization[J]. Engineering, 2018, 4(3): 352 -360 .
[10] Raymond RedCorn, Samira Fatemi, Abigail S. Engelberth. Comparing End-Use Potential for Industrial Food-Waste Sources[J]. Engineering, 2018, 4(3): 371 -380 .
[11] Ning Duan, Linhua Jiang, Fuyuan Xu, Ge Zhang. A Non-Contact Original-State Online Real-Time Monitoring Method for Complex Liquids in Industrial Processes[J]. Engineering, 2018, 4(3): 392 -397 .
[12] Keith E. Gubbins, Kai Gu, Liangliang Huang, Yun Long, J. Matthew Mansell, Erik E. Santiso, Kaihang Shi, Małgorzata Ś liwińska-Bartkowiak, Deepti Srivastava. Surface-Driven High-Pressure Processing[J]. Engineering, 2018, 4(3): 311 -320 .
[13] Steff Van Loy, Koen Binnemans, Tom Van Gerven. Mechanochemical-Assisted Leaching of Lamp Phosphors: A Green Engineering Approach for Rare-Earth Recovery[J]. Engineering, 2018, 4(3): 398 -405 .
[14] Robert S. Weber, Johnathan E. Holladay. Modularized Production of Value-Added Products and Fuels from Distributed Waste Carbon-Rich Feedstocks[J]. Engineering, 2018, 4(3): 330 -335 .
[15] Hualin Wang, Pengbo Fu, Jianping Li, Yuan Huang, Ying Zhao, Lai Jiang, Xiangchen Fang, Tao Yang, Zhaohui Huang, Cheng Huang. Separation-and-Recovery Technology for Organic Waste Liquid with a High Concentration of Inorganic Particles[J]. Engineering, 2018, 4(3): 406 -415 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
京ICP备11030251号-2

 Engineering