Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2015, Vol. 1 Issue (1) : 150 -157
Research |
Scientific and Engineering Progress in CO2 Mineralization Using Industrial Waste and Natural Minerals
Heping Xie1,2,(),Hairong Yue3,Jiahua Zhu3,Bin Liang1,3,Chun Li3,Yufei Wang1,2,Lingzhi Xie1,Xiangge Zhou4
1. Center of CCUS and CO2 Mineralization and Utilization, Sichuan University, Chengdu 610065, China
2. College of Water Resources & Hydropower, Sichuan University, Chengdu 610065, China
3. College of Chemical Engineering, Sichuan University, Chengdu 610065, China
4. School of Chemistry, Sichuan University, Chengdu 610065, China

The issues of reducing CO2 levels in the atmosphere, sustainably utilizing natural mineral resources, and dealing with industrial waste offer challenging opportunities for sustainable development in energy and the environment. The latest advances in CO2 mineralization technology involving natural minerals and industrial waste are summarized in this paper, with great emphasis on the advancement of fundamental science, economic evaluation, and engineering applications. We discuss several leading large-scale CO2 mineralization methodologies from a technical and engineering-science perspective. For each technology option, we give an overview of the technical parameters, reaction pathway, reactivity, procedural scheme, and laboratorial and pilot devices. Furthermore, we present a discussion of each technology based on experimental results and the literature. Finally, current gaps in knowledge are identified in the conclusion, and an overview of the challenges and opportunities for future research in this field is provided.

Keywords CO2 mineralization      natural mineral      industrial waste      science and engineering     
Corresponding Authors: Heping Xie   
Just Accepted Date: 31 March 2015   Issue Date: 03 July 2015
E-mail this article
E-mail Alert
Articles by authors
Heping Xie
Hairong Yue
Jiahua Zhu
Bin Liang
Chun Li
Yufei Wang
Lingzhi Xie
Xiangge Zhou
Cite this article:   
Heping Xie,Hairong Yue,Jiahua Zhu, et al. Scientific and Engineering Progress in CO2 Mineralization Using Industrial Waste and Natural Minerals[J]. Engineering, 2015, 1(1): 150 -157 .
URL:     OR
1   C. Y. Tai, W. R. Chen, S. M. Shih. Factors affecting wollastonite carbonation under CO2 supercritical conditions. AlChE J., 2006, 52(1): 292–299
2   W. Wang, X. Liu, P. Wang, Y. Zheng, M. Wang. Enhancement of CO2 mineralization in Ca2+-/Mg2+-rich aqueous solutions using insoluble amine. Ind. Eng. Chem. Res., 2013, 52(23): 8028–8033
3   V. Materic, S. I. Smedley. High temperature carbonation of Ca(OH)2. Ind. Eng. Chem. Res., 2011, 50(10): 5927–5932
4   G. Grasa, J. C. Abanades, E. J. Anthony. Effect of partial carbonation on the cyclic CaO carbonation reaction. Ind. Eng. Chem. Res., 2009, 48(20): 9090–9096
5   D. Tong, J. P. M. Trusler, D. Vega-Maza. Solubility of CO2 in aqueous solutions of CaCl2 or MgCl2 and in a synthetic formation brine at temperatures up to 423 K and pressures up to 40 MPa. J. Chem. Eng. Data, 2013, 58(7): 2116–2124
6   K. K. Godishala, J. S. Sangwai, N. A. Sami, K. Das. Phase stability of semiclathrate hydrates of carbon dioxide in synthetic sea water. J. Chem. Eng. Data, 2013, 58(4): 1062–1067
7   X. Li, E. S. Boek, G. C. Maitland, J. P. M. Trusler. Interfacial tension of (brines+ CO2): CaCl2(aq), MgCl2(aq), and Na2SO4(aq) at temperatures between (343 and 423) K, pressures between (2 and 50) MPa, and molalities of (0.5 to 5) mol·kg−1. J. Chem. Eng. Data, 2012, 57(5): 1369–1375
8   Z. Sun, M. Fan, M. Argyle. Supported monoethanolamine for CO2 separation. Ind. Eng. Chem. Res., 2011, 50(19): 11343–11349
9   W. Chaikittisilp, R. Khunsupat, T. T. Chen, C. W. Jones. Poly (allylamine)-mesoporous silica composite materials for CO2 capture from simulated flue gas or ambient air. Ind. Eng. Chem. Res., 2011, 50(24): 14203–14210
10   S. Holloway, J. M. Pearce, V. L. Hards, T. Ohsumi, J. Gale. Natural emissions of CO2 from the geosphere and their bearing on the geological storage of carbon dioxide. Energy, 2007, 32(7): 1194–1201
11   H. Hassanzadeh, M. Pooladi-Darvish, D. W. Keith. Accelerating CO2 dissolution in saline aquifers for geological storage — Mechanistic and sensitivity studies. Energy Fuels, 2009, 23(6): 3328–3336
12   J. Zhu, et al. Thermodynamics cognizance of CCS and CCU routes for CO2 Emmission Reduction. J. Sichuan Uni. (Eng. Sci. Ed), 2013, 45(5): 1–7 (in Chinese)
13   M. Verduyn, H. Geerlings, G. Mossel, S. Vijayakumari. Review of the various CO2 mineralization product forms. Energy Procedia, 2011, 4: 2885–2892
14   H. Tayibi, M. Choura, F. A. López, F. J. Alguacil, A. López-Delgado. Environmental impact and management of phosphogypsum. J. Environ. Manage., 2009, 90(8): 2377–2386
15   C. Wang, H. Yue, C. Li, B. Liang, J. Zhu, H. Xie. Mineralization of CO2 using natural K-feldspar and industrial solid waste to produce soluble potassium. Ind. Eng. Chem. Res., 2014, 53(19): 7971–7978
16   H. Xie, et al. Simultaneous mineralization of CO2 and recovery of soluble potassium using earth-abundant potassium feldspar. Chin. Sci. Bull., 2013, 58(1): 128–132
17   B. Metz, O. Davidson, H. C. de Coninck, M. Loos, L. A. Meyer, eds. IPCC Special Report on Carbon Dioxide Capture and Storage. Cambridge: Cambridge University Press, 2005
18   H. Xie, Y. Wang, W. Chu, Y. Ju. Mineralization of flue gas CO2 with coproduction of valuable magnesium carbonate by means of magnesium chloride. Chin. Sci. Bull., 2014, 59(23): 2882–2889
19   L. Ye, et al. CO2 mineralization of activated K-feldspar+ CaCl2 slag to fix carbon and produce soluble potash salt. Ind. Eng. Chem. Res., 2014, 53(26): 10557–10565
20   İ. Akın Altun, Y. Sert. Utilization of weathered phosphogypsum as set retarder in Portland cement. Cement Concr. Res., 2004, 34(4): 677–680
21   H. V. M. Hamelers, O. Schaetzle, J. M. Paz-García, P. M. Biesheuvel, C. J. N. Buisman. Harvesting energy from CO2 emissions. Environ. Sci. Technol. Lett., 2013, 1(1): 31–35
22   H. Xie, et al. Generation of electricity from CO2 mineralization: Principle and realization, Sci. China Technol. Sc., 2014,57 (12): 2335–2346. 
23   K. Huang, X. Meng, G. Wang. Research progress of extracting potassium from potassium feldspar. Phosphate & Compound Fertilizer, 2011, 26(5): 16–19
24   I. A. Munz, et al. Mechanisms and rates of plagioclase carbonation reactions. Geochim. Cosmochim. Acta, 2012, 77: 27–51
[1] Holger Krueger. Standardization for Additive Manufacturing in Aerospace[J]. Engineering, 2017, 3(5): 585 .
[2] Joe A. Sestak Jr.. High School Students from 157 Countries Convene to Address One of the 14 Grand Challenges for Engineering: Access to Clean Water[J]. Engineering, 2017, 3(5): 583 -584 .
[3] Lance A. Davis. Climate Agreement—Revisited[J]. Engineering, 2017, 3(5): 578 -579 .
[4] Ben A. Wender, M. Granger Morgan, K. John Holmes. Enhancing the Resilience of Electricity Systems[J]. Engineering, 2017, 3(5): 580 -582 .
[5] Jin-Xun Liu, Peng Wang, Wayne Xu, Emiel J. M. Hensen. Particle Size and Crystal Phase Effects in Fischer-Tropsch Catalysts[J]. Engineering, 2017, 3(4): 467 -476 .
[6] Luis Ribeiro e Sousa, Tiago Miranda, Rita Leal e Sousa, Joaquim Tinoco. The Use of Data Mining Techniques in Rockburst Risk Assessment[J]. Engineering, 2017, 3(4): 552 -558 .
[7] Maggie Bartolomeo. Third Global Grand Challenges Summit for Engineering[J]. Engineering, 2017, 3(4): 434 -435 .
[8] Michael Powalla, Stefan Paetel, Dimitrios Hariskos, Roland Wuerz, Friedrich Kessler, Peter Lechner, Wiltraud Wischmann, Theresa Magorian Friedlmeier. Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2[J]. Engineering, 2017, 3(4): 445 -451 .
[9] Raffaella Ocone. Reconciling “Micro” and “Macro” through Meso-Science[J]. Engineering, 2017, 3(3): 281 -282 .
[10] Baoning Zong, Bin Sun, Shibiao Cheng, Xuhong Mu, Keyong Yang, Junqi Zhao, Xiaoxin Zhang, Wei Wu. Green Production Technology of the Monomer of Nylon-6: Caprolactam[J]. Engineering, 2017, 3(3): 379 -384 .
[11] Pengcheng Xu, Yong Jin, Yi Cheng. Thermodynamic Analysis of the Gasification of Municipal Solid Waste[J]. Engineering, 2017, 3(3): 416 -422 .
[12] Lei Xu, Jinhui Peng, Hailong Bai, C. Srinivasakannan, Libo Zhang, Qingtian Wu, Zhaohui Han, Shenghui Guo, Shaohua Ju, Li Yang. Application of Microwave Melting for the Recovery of Tin Powder[J]. Engineering, 2017, 3(3): 423 -427 .
[13] Ee Teng Kho, Salina Jantarang, Zhaoke Zheng, Jason Scott, Rose Amal. Harnessing the Beneficial Attributes of Ceria and Titania in a Mixed-Oxide Support for Nickel-Catalyzed Photothermal CO2 Methanation[J]. Engineering, 2017, 3(3): 393 -401 .
[14] Ke Dang, Tuo Wang, Chengcheng Li, Jijie Zhang, Shanshan Liu, Jinlong Gong. Improved Oxygen Evolution Kinetics and Surface States Passivation of Ni-Bi Co-Catalyst for a Hematite Photoanode[J]. Engineering, 2017, 3(3): 285 -289 .
[15] Mu Xiao, Songcan Wang, Supphasin Thaweesak, Bin Luo, Lianzhou Wang. Tantalum (Oxy)Nitride: Narrow Bandgap Photocatalysts for Solar Hydrogen Generation[J]. Engineering, 2017, 3(3): 365 -378 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
Today's visits ;Accumulated visits . 京ICP备11030251号-2