Please wait a minute...
Submit  |   Chinese  | 
 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2015, Vol. 1 Issue (1) : 150 -157     https://doi.org/10.15302/J-ENG-2015017
Research |
Scientific and Engineering Progress in CO2 Mineralization Using Industrial Waste and Natural Minerals
Heping Xie1,2,(),Hairong Yue3,Jiahua Zhu3,Bin Liang1,3,Chun Li3,Yufei Wang1,2,Lingzhi Xie1,Xiangge Zhou4
1. Center of CCUS and CO2 Mineralization and Utilization, Sichuan University, Chengdu 610065, China
2. College of Water Resources & Hydropower, Sichuan University, Chengdu 610065, China
3. College of Chemical Engineering, Sichuan University, Chengdu 610065, China
4. School of Chemistry, Sichuan University, Chengdu 610065, China
Abstract
Abstract  

The issues of reducing CO2 levels in the atmosphere, sustainably utilizing natural mineral resources, and dealing with industrial waste offer challenging opportunities for sustainable development in energy and the environment. The latest advances in CO2 mineralization technology involving natural minerals and industrial waste are summarized in this paper, with great emphasis on the advancement of fundamental science, economic evaluation, and engineering applications. We discuss several leading large-scale CO2 mineralization methodologies from a technical and engineering-science perspective. For each technology option, we give an overview of the technical parameters, reaction pathway, reactivity, procedural scheme, and laboratorial and pilot devices. Furthermore, we present a discussion of each technology based on experimental results and the literature. Finally, current gaps in knowledge are identified in the conclusion, and an overview of the challenges and opportunities for future research in this field is provided.

Keywords CO2 mineralization      natural mineral      industrial waste      science and engineering     
Fund: 
Corresponding Authors: Heping Xie   
Just Accepted Date: 31 March 2015   Issue Date: 03 July 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Heping Xie
Hairong Yue
Jiahua Zhu
Bin Liang
Chun Li
Yufei Wang
Lingzhi Xie
Xiangge Zhou
Cite this article:   
Heping Xie,Hairong Yue,Jiahua Zhu, et al. Scientific and Engineering Progress in CO2 Mineralization Using Industrial Waste and Natural Minerals[J]. Engineering, 2015, 1(1): 150 -157 .
URL:  
http://engineering.org.cn/EN/10.15302/J-ENG-2015017     OR     http://engineering.org.cn/EN/Y2015/V1/I1/150
References
1   C. Y. Tai, W. R. Chen, S. M. Shih. Factors affecting wollastonite carbonation under CO2 supercritical conditions. AlChE J., 2006, 52(1): 292–299
2   W. Wang, X. Liu, P. Wang, Y. Zheng, M. Wang. Enhancement of CO2 mineralization in Ca2+-/Mg2+-rich aqueous solutions using insoluble amine. Ind. Eng. Chem. Res., 2013, 52(23): 8028–8033
3   V. Materic, S. I. Smedley. High temperature carbonation of Ca(OH)2. Ind. Eng. Chem. Res., 2011, 50(10): 5927–5932
4   G. Grasa, J. C. Abanades, E. J. Anthony. Effect of partial carbonation on the cyclic CaO carbonation reaction. Ind. Eng. Chem. Res., 2009, 48(20): 9090–9096
5   D. Tong, J. P. M. Trusler, D. Vega-Maza. Solubility of CO2 in aqueous solutions of CaCl2 or MgCl2 and in a synthetic formation brine at temperatures up to 423 K and pressures up to 40 MPa. J. Chem. Eng. Data, 2013, 58(7): 2116–2124
6   K. K. Godishala, J. S. Sangwai, N. A. Sami, K. Das. Phase stability of semiclathrate hydrates of carbon dioxide in synthetic sea water. J. Chem. Eng. Data, 2013, 58(4): 1062–1067
7   X. Li, E. S. Boek, G. C. Maitland, J. P. M. Trusler. Interfacial tension of (brines+ CO2): CaCl2(aq), MgCl2(aq), and Na2SO4(aq) at temperatures between (343 and 423) K, pressures between (2 and 50) MPa, and molalities of (0.5 to 5) mol·kg−1. J. Chem. Eng. Data, 2012, 57(5): 1369–1375
8   Z. Sun, M. Fan, M. Argyle. Supported monoethanolamine for CO2 separation. Ind. Eng. Chem. Res., 2011, 50(19): 11343–11349
9   W. Chaikittisilp, R. Khunsupat, T. T. Chen, C. W. Jones. Poly (allylamine)-mesoporous silica composite materials for CO2 capture from simulated flue gas or ambient air. Ind. Eng. Chem. Res., 2011, 50(24): 14203–14210
10   S. Holloway, J. M. Pearce, V. L. Hards, T. Ohsumi, J. Gale. Natural emissions of CO2 from the geosphere and their bearing on the geological storage of carbon dioxide. Energy, 2007, 32(7): 1194–1201
11   H. Hassanzadeh, M. Pooladi-Darvish, D. W. Keith. Accelerating CO2 dissolution in saline aquifers for geological storage — Mechanistic and sensitivity studies. Energy Fuels, 2009, 23(6): 3328–3336
12   J. Zhu, et al. Thermodynamics cognizance of CCS and CCU routes for CO2 Emmission Reduction. J. Sichuan Uni. (Eng. Sci. Ed), 2013, 45(5): 1–7 (in Chinese)
13   M. Verduyn, H. Geerlings, G. Mossel, S. Vijayakumari. Review of the various CO2 mineralization product forms. Energy Procedia, 2011, 4: 2885–2892
14   H. Tayibi, M. Choura, F. A. López, F. J. Alguacil, A. López-Delgado. Environmental impact and management of phosphogypsum. J. Environ. Manage., 2009, 90(8): 2377–2386
15   C. Wang, H. Yue, C. Li, B. Liang, J. Zhu, H. Xie. Mineralization of CO2 using natural K-feldspar and industrial solid waste to produce soluble potassium. Ind. Eng. Chem. Res., 2014, 53(19): 7971–7978
16   H. Xie, et al. Simultaneous mineralization of CO2 and recovery of soluble potassium using earth-abundant potassium feldspar. Chin. Sci. Bull., 2013, 58(1): 128–132
17   B. Metz, O. Davidson, H. C. de Coninck, M. Loos, L. A. Meyer, eds. IPCC Special Report on Carbon Dioxide Capture and Storage. Cambridge: Cambridge University Press, 2005
18   H. Xie, Y. Wang, W. Chu, Y. Ju. Mineralization of flue gas CO2 with coproduction of valuable magnesium carbonate by means of magnesium chloride. Chin. Sci. Bull., 2014, 59(23): 2882–2889
19   L. Ye, et al. CO2 mineralization of activated K-feldspar+ CaCl2 slag to fix carbon and produce soluble potash salt. Ind. Eng. Chem. Res., 2014, 53(26): 10557–10565
20   İ. Akın Altun, Y. Sert. Utilization of weathered phosphogypsum as set retarder in Portland cement. Cement Concr. Res., 2004, 34(4): 677–680
21   H. V. M. Hamelers, O. Schaetzle, J. M. Paz-García, P. M. Biesheuvel, C. J. N. Buisman. Harvesting energy from CO2 emissions. Environ. Sci. Technol. Lett., 2013, 1(1): 31–35
22   H. Xie, et al. Generation of electricity from CO2 mineralization: Principle and realization, Sci. China Technol. Sc., 2014,57 (12): 2335–2346. 
23   K. Huang, X. Meng, G. Wang. Research progress of extracting potassium from potassium feldspar. Phosphate & Compound Fertilizer, 2011, 26(5): 16–19
24   I. A. Munz, et al. Mechanisms and rates of plagioclase carbonation reactions. Geochim. Cosmochim. Acta, 2012, 77: 27–51
Related
[1] Zhuo Cheng, Lang Qin, Jonathan A. Fan, Liang-Shih Fan. New Insight into the Development of Oxygen Carrier Materials for Chemical Looping Systems[J]. Engineering, 2018, 4(3): 343 -351 .
[2] Jennifer A. Clark, Erik E. Santiso. Carbon Sequestration through CO2 Foam-Enhanced Oil Recovery: A Green Chemistry Perspective[J]. Engineering, 2018, 4(3): 336 -342 .
[3] Andrea Di Maria, Karel Van Acker. Turning Industrial Residues into Resources: An Environmental Impact Assessment of Goethite Valorization[J]. Engineering, 2018, 4(3): 421 -429 .
[4] Lance A. Davis. Falcon Heavy[J]. Engineering, 2018, 4(3): 300 .
[5] Augusta Maria Paci. A Research and Innovation Policy for Sustainable S&T: A Comment on the Essay ‘‘Exploring the Logic and Landscape of the Knowledge System”[J]. Engineering, 2018, 4(3): 306 -308 .
[6] Ning Duan. When Will Speed of Progress in Green Science and Technology Exceed that of Resource Exploitation and Pollutant Generation?[J]. Engineering, 2018, 4(3): 299 .
[7] Jian-guo Li, Kai Zhan. Intelligent Mining Technology for an Underground Metal Mine Based on Unmanned Equipment[J]. Engineering, 2018, 4(3): 381 -391 .
[8] Veena Sahajwalla. Green Processes: Transforming Waste into Valuable Resources[J]. Engineering, 2018, 4(3): 309 -310 .
[9] Junye Wang, Hualin Wang, Yi Fan. Techno-Economic Challenges of Fuel Cell Commercialization[J]. Engineering, 2018, 4(3): 352 -360 .
[10] Raymond RedCorn, Samira Fatemi, Abigail S. Engelberth. Comparing End-Use Potential for Industrial Food-Waste Sources[J]. Engineering, 2018, 4(3): 371 -380 .
[11] Ning Duan, Linhua Jiang, Fuyuan Xu, Ge Zhang. A Non-Contact Original-State Online Real-Time Monitoring Method for Complex Liquids in Industrial Processes[J]. Engineering, 2018, 4(3): 392 -397 .
[12] Keith E. Gubbins, Kai Gu, Liangliang Huang, Yun Long, J. Matthew Mansell, Erik E. Santiso, Kaihang Shi, Małgorzata Ś liwińska-Bartkowiak, Deepti Srivastava. Surface-Driven High-Pressure Processing[J]. Engineering, 2018, 4(3): 311 -320 .
[13] Steff Van Loy, Koen Binnemans, Tom Van Gerven. Mechanochemical-Assisted Leaching of Lamp Phosphors: A Green Engineering Approach for Rare-Earth Recovery[J]. Engineering, 2018, 4(3): 398 -405 .
[14] Robert S. Weber, Johnathan E. Holladay. Modularized Production of Value-Added Products and Fuels from Distributed Waste Carbon-Rich Feedstocks[J]. Engineering, 2018, 4(3): 330 -335 .
[15] Hualin Wang, Pengbo Fu, Jianping Li, Yuan Huang, Ying Zhao, Lai Jiang, Xiangchen Fang, Tao Yang, Zhaohui Huang, Cheng Huang. Separation-and-Recovery Technology for Organic Waste Liquid with a High Concentration of Inorganic Particles[J]. Engineering, 2018, 4(3): 406 -415 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
京ICP备11030251号-2

 Engineering