Please wait a minute...
Submit  |   Chinese  | 
 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2015, Vol. 1 Issue (1) : 15 -17     https://doi.org/10.15302/J-ENG-2015018
News & Highlights |
A Micromotor Catheter for Intravascular Optical Coherence Tomography
Tianshi Wang1,Gijs van Soest1,Antonius F. W. van der Steen1,2,3
1. Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam 3000 DR, the Netherlands
2. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
3. Department of Imaging Physics and Technology, Delft University of Technology, Delft 2600 AA, the Netherlands
Abstract
Abstract  

We have developed a new form of intravascular optical coherence tomography (IV-OCT) that allows the extremely fast acquisition of high-resolution images of the coronary arteries. This process leads to much better image quality by eliminating cardiac motion artefacts and undersampling. It relies on a catheter that incorporates a synchronous micromotor with a diameter of 1.0 mm and a rotational speed of up to 5600 revolutions per second, enabling an IV-OCT frame rate of 5.6 kHz. This speed is matched by a wavelength-swept laser that generates up to 2.8 million image lines per second. With this setup, our team achieved IV-OCT imaging of up to 5600 frames per second (fps) in vitro and 4000 fps in vivo, deployed at a 100 mm·s−1 pullback velocity. The imaging session is triggered by the electrocardiogram of the subject, and can scan a coronary artery in the phase of the heartbeat where the heart is at rest, providing a name for this new technology: the “Heartbeat OCT.”

Keywords       
Fund: 
Just Accepted Date: 31 March 2015   Issue Date: 02 July 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Tianshi Wang
Gijs van Soest
Antonius F. W. van der Steen
Cite this article:   
Tianshi Wang,Gijs van Soest,Antonius F. W. van der Steen. A Micromotor Catheter for Intravascular Optical Coherence Tomography[J]. Engineering, 2015, 1(1): 15 -17 .
URL:  
http://engineering.org.cn/EN/10.15302/J-ENG-2015018     OR     http://engineering.org.cn/EN/Y2015/V1/I1/15
References
1   T. Okamura, Y. Onuma, H. M. Garcia-Garcia, N. Bruining, P. W. Serruys. High-speed intracoronary optical frequency domain imaging: Implications for three-dimensional reconstruction and quantitative analysis. EuroIntervention, 2012, 7(10): 1216–1226
2   V. Farooq,  Three-dimensional optical frequency domain imaging in conventional percutaneous coronary intervention: The potential for clinical application. Eur. Heart J., 2013, 34(12): 875–885
3   T. Wang,  Development of a high-speed synchronous micro motor and its application in intravascular imaging. Sens. Actuators A Phys., 2014, 218: 60–68
4   W. Wieser,  Extended coherence length megahertz FDML and its application for anterior segment imaging. Biomed. Opt. Express, 2012, 3(10): 2647–2657
5   T. Wang,  Intravascular optical coherence tomography imaging at 3200 frames per second. Opt. Lett., 2013, 38(10): 1715–1717
6   T. S. Wang. Heartbeat optical coherence tomography (PhD Thesis). Rotterdam: Erasmus MC, 2015
Related
[1] Joe A. Sestak Jr.. High School Students from 157 Countries Convene to Address One of the 14 Grand Challenges for Engineering: Access to Clean Water[J]. Engineering, 2017, 3(5): 583 -584 .
[2] Holger Krueger. Standardization for Additive Manufacturing in Aerospace[J]. Engineering, 2017, 3(5): 585 .
[3] Lance A. Davis. Climate Agreement—Revisited[J]. Engineering, 2017, 3(5): 578 -579 .
[4] Ben A. Wender, M. Granger Morgan, K. John Holmes. Enhancing the Resilience of Electricity Systems[J]. Engineering, 2017, 3(5): 580 -582 .
[5] Maggie Bartolomeo. Third Global Grand Challenges Summit for Engineering[J]. Engineering, 2017, 3(4): 434 -435 .
[6] Raffaella Ocone. Reconciling “Micro” and “Macro” through Meso-Science[J]. Engineering, 2017, 3(3): 281 -282 .
[7] Jian-Feng Chen. Green Chemical Engineering for a Better Life[J]. Engineering, 2017, 3(3): 279 .
[8] He Zhuang, Liping Feng, Chao Wen, Qiyuan Peng, Qizhi Tang. Corrigendum to “High-Speed Railway Train Timetable Conflict Prediction Based on Fuzzy Temporal Knowledge Reasoning” [J]. Engineering, 2017, 3(1): 150 .
[9] Shouren Zheng. Reflections on the Three Gorges Project since Its Operation[J]. Engineering, 2016, 2(4): 389 -397 .
[10] Dabo Guan, Yuli Shan, Zhu Liu, Kebin He. Performance Assessment and Outlook of China’s Emission-Trading Scheme[J]. Engineering, 2016, 2(4): 398 -401 .
[11] Lance A. Davis. Climate Agreement[J]. Engineering, 2016, 2(4): 387 -388 .
[12] Michel Leboeuf. High-Speed Rail: Opportunities and Threats[J]. Engineering, 2016, 2(4): 402 -408 .
[13] Lance A. Davis. Genetically Engineered Crops[J]. Engineering, 2016, 2(3): 268 -269 .
[14] Lance A. Davis. The World’s Longest Tunnel[J]. Engineering, 2016, 2(3): 263 -264 .
[15] Huawu He. Key Challenges and Countermeasures with Railway Accessibility along the Silk Road[J]. Engineering, 2016, 2(3): 288 -291 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
京ICP备11030251号-2

 Engineering