Please wait a minute...
Submit  |   Chinese  | 
 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2015, Vol. 1 Issue (1) : 79 -84     https://doi.org/10.15302/J-ENG-2015024
Research |
Personalizing a Service Robot by Learning Human Habits from Behavioral Footprints
Kun Li1,Max Q.-H. Meng2,()
1. California Institute of Technology, Pasadena, CA 91125, USA
2. The Chinese University of Hong Kong, Hong Kong, China
Abstract
Abstract  

For a domestic personal robot, personalized services are as important as predesigned tasks, because the robot needs to adjust the home state based on the operator’s habits. An operator’s habits are composed of cues, behaviors, and rewards. This article introduces behavioral footprints to describe the operator’s behaviors in a house, and applies the inverse reinforcement learning technique to extract the operator’s habits, represented by a reward function. We implemented the proposed approach with a mobile robot on indoor temperature adjustment, and compared this approach with a baseline method that recorded all the cues and behaviors of the operator. The result shows that the proposed approach allows the robot to reveal the operator’s habits accurately and adjust the environment state accordingly.

Keywords personalized robot      habit learning      behavioral footprints     
Fund: 
Corresponding Authors: Max Q.-H. Meng   
Just Accepted Date: 31 March 2015   Issue Date: 03 July 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kun Li
Max Q.-H. Meng
Cite this article:   
Kun Li,Max Q.-H. Meng. Personalizing a Service Robot by Learning Human Habits from Behavioral Footprints[J]. Engineering, 2015, 1(1): 79 -84 .
URL:  
http://engineering.org.cn/EN/10.15302/J-ENG-2015024     OR     http://engineering.org.cn/EN/Y2015/V1/I1/79
References
1   W. Wood, D. T.  Neal. A new look at habits and the habit-goal interface. Psychol. Rev., 2007, 114(4): 843–863
2   W. Meeussen,  Autonomous door opening and plugging in with a personal robot. In: Proceedings of 2010 IEEE International Conference on Robotics and Automation (ICRA), 2010: 729–736
3   R. B.  Rusu, I. A.  Sucan, B. P.  Gerkey, S. Chitta, M. Beetz, L. E.  Kavraki. Real-time perception-guided motion planning for a personal robot. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009: 4245–4252
4   J. F.  Gorostiza,  Multimodal human-robot interaction framework for a personal robot. In: Proceedings of the 15th IEEE International Symposium on Robot and Human Interactive Communication, 2006: 39–44
5   K. A.  Wyrobek, E. H.  Berger, H. F. M. Van der Loos, J. K.  Salisbury. Towards a personal robotics development platform: Rationale and design of an intrinsically safe personal robot. In: Proceedings of IEEE International Conference on Robotics and Automation, 2008: 2165–2170
6   E. Falcone, R. Gockley, E. Porter, I. Nourbakhsh. The personal rover project: The comprehensive design of a domestic personal robot. Robot. Auton. Syst., 2003, 42(3¯4): 245–258
7   L. Tonin, T. Carlson, R. Leeb, J. del R. Milla?n. Brain-controlled telepresence robot by motor-disabled people. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011: 4227–4230
8   T. C.  Tsai, Y. L.  Hsu, A. I.  Ma, T. King, C. H.  Wu. Developing a telepresence robot for interpersonal communication with the elderly in a home environment. Telemed. J. E Health, 2007, 13(4): 407–424
9   P. R.  Liu, M. Q. H. Meng, P. X.  Liu, F. F. L. Tong, X. J.  Chen. A telemedicine system for remote health and activity monitoring for the elderly. Telemed. J. E Health, 2006, 12(6): 622–631
10   M. Baeg, J. H.  Park, J. Koh, K. W.  Park, M. H.  Baeg. Building a smart home environment for service robots based on RFID and sensor networks. In: Proceedings of International Conference on Control, Automation and Systems, 2007: 1078–1082
11   N. Oliver, A. Garg, E. Horvitz. Layered representations for learning and inferring office activity from multiple sensory channels. Comput. Vis. Image Underst., 2004, 96(2): 163–180
12   S. Fine, Y. Singer, N. Tishby. The hierarchical hidden Markov model: Analysis and applications. Mach. Learn., 1998, 32(1): 41–62
13   R. S.  Sutton, A. G.  Barto. Reinforcement Learning: An Introduction. Cambridge, MA: MIT Press, 1998
14   B. D.  Argall, S. Chernova, M. Veloso, B. Browning. A survey of robot learning from demonstration. Robot. Auton. Syst., 2009, 57(5): 469–483
15   P. Abbeel, A. Y.  Ng. Apprenticeship learning via inverse reinforcement learning. In: Proceedings of the Twenty-first International Conference on Machine Learning, 2004: 1
16   A. Y.  Ng, S. J.  Russell. Algorithms for inverse reinforcement learning. In: Proceedings of the Seventeenth International Conference on Machine Learning, 2000: 663–670
17   G. Grisetti, C. Stachniss, W. Burgard. Improved techniques for grid mapping with Rao-Blackwellized particle filters. IEEE Trans. Robot., 2007, 23(1): 34–46
18   T. Joachims. Making large-scale SVM learning practical. In: B. Schölkopf, C. J. C. Burges, A. J.  Smola, eds. Advances in Kernel Methods: Support Vector Learning. Cambridge, MA: MIT Press, 1999: 169–184
Related
[1] Zhuo Cheng, Lang Qin, Jonathan A. Fan, Liang-Shih Fan. New Insight into the Development of Oxygen Carrier Materials for Chemical Looping Systems[J]. Engineering, 2018, 4(3): 343 -351 .
[2] Jennifer A. Clark, Erik E. Santiso. Carbon Sequestration through CO2 Foam-Enhanced Oil Recovery: A Green Chemistry Perspective[J]. Engineering, 2018, 4(3): 336 -342 .
[3] Andrea Di Maria, Karel Van Acker. Turning Industrial Residues into Resources: An Environmental Impact Assessment of Goethite Valorization[J]. Engineering, 2018, 4(3): 421 -429 .
[4] Lance A. Davis. Falcon Heavy[J]. Engineering, 2018, 4(3): 300 .
[5] Augusta Maria Paci. A Research and Innovation Policy for Sustainable S&T: A Comment on the Essay ‘‘Exploring the Logic and Landscape of the Knowledge System”[J]. Engineering, 2018, 4(3): 306 -308 .
[6] Ning Duan. When Will Speed of Progress in Green Science and Technology Exceed that of Resource Exploitation and Pollutant Generation?[J]. Engineering, 2018, 4(3): 299 .
[7] Jian-guo Li, Kai Zhan. Intelligent Mining Technology for an Underground Metal Mine Based on Unmanned Equipment[J]. Engineering, 2018, 4(3): 381 -391 .
[8] Veena Sahajwalla. Green Processes: Transforming Waste into Valuable Resources[J]. Engineering, 2018, 4(3): 309 -310 .
[9] Junye Wang, Hualin Wang, Yi Fan. Techno-Economic Challenges of Fuel Cell Commercialization[J]. Engineering, 2018, 4(3): 352 -360 .
[10] Raymond RedCorn, Samira Fatemi, Abigail S. Engelberth. Comparing End-Use Potential for Industrial Food-Waste Sources[J]. Engineering, 2018, 4(3): 371 -380 .
[11] Ning Duan, Linhua Jiang, Fuyuan Xu, Ge Zhang. A Non-Contact Original-State Online Real-Time Monitoring Method for Complex Liquids in Industrial Processes[J]. Engineering, 2018, 4(3): 392 -397 .
[12] Keith E. Gubbins, Kai Gu, Liangliang Huang, Yun Long, J. Matthew Mansell, Erik E. Santiso, Kaihang Shi, Małgorzata Ś liwińska-Bartkowiak, Deepti Srivastava. Surface-Driven High-Pressure Processing[J]. Engineering, 2018, 4(3): 311 -320 .
[13] Steff Van Loy, Koen Binnemans, Tom Van Gerven. Mechanochemical-Assisted Leaching of Lamp Phosphors: A Green Engineering Approach for Rare-Earth Recovery[J]. Engineering, 2018, 4(3): 398 -405 .
[14] Robert S. Weber, Johnathan E. Holladay. Modularized Production of Value-Added Products and Fuels from Distributed Waste Carbon-Rich Feedstocks[J]. Engineering, 2018, 4(3): 330 -335 .
[15] Hualin Wang, Pengbo Fu, Jianping Li, Yuan Huang, Ying Zhao, Lai Jiang, Xiangchen Fang, Tao Yang, Zhaohui Huang, Cheng Huang. Separation-and-Recovery Technology for Organic Waste Liquid with a High Concentration of Inorganic Particles[J]. Engineering, 2018, 4(3): 406 -415 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
京ICP备11030251号-2

 Engineering