Please wait a minute...
Submit  |   Chinese  | 
 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2015, Vol. 1 Issue (2) : 211 -224     https://doi.org/10.15302/J-ENG-2015031
Research |
Research and Development of Heat-Resistant Materials for Advanced USC Power Plants with Steam Temperatures of 700 °C and Above
Fujio Abe()
National Institute for Materials Science, Tsukuba 305-0047, Japan
Abstract
Abstract  

Materials-development projects for advanced ultra-supercritical (A-USC) power plants with steam temperatures of 700 °C and above have been performed in order to achieve high efficiency and low CO2 emissions in Europe, the US, Japan, and recently in China and India as well. These projects involve the replacement of martensitic 9%−12% Cr steels with nickel (Ni)-base alloys for the highest temperature boiler and turbine components in order to provide sufficient creep strength at 700°C and above. To minimize the require­ment for expensive Ni-base alloys, martensitic 9%−12% Cr steels can be applied to the next highest temperature components of an A-USC power plant, up to a maximum of 650°C. This paper comprehensively describes the research and development of Ni-base alloys and martensitic 9%−12% Cr steels for thick section boiler and turbine components of A-USC power plants, mainly focusing on the long-term creep-rupture strength of base metal and welded joints, strength loss in welded joints, creep-fatigue properties, and microstructure evolution during exposure at elevated temperatures.

Keywords Ni-base alloy      9%−12% Cr steel      creep streng­th      creep-fatigue property      welded joint      grain boundary      microstructure      γ      M23C6 carbide     
Fund: 
Corresponding Authors: Fujio Abe   
Just Accepted Date: 30 June 2015   Issue Date: 16 September 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Fujio Abe
Cite this article:   
Fujio Abe. Research and Development of Heat-Resistant Materials for Advanced USC Power Plants with Steam Temperatures of 700 °C and Above[J]. Engineering, 2015, 1(2): 211 -224 .
URL:  
http://engineering.org.cn/EN/10.15302/J-ENG-2015031     OR     http://engineering.org.cn/EN/Y2015/V1/I2/211
References
1   F. Abe. Development of creep-resistant steels and alloys for use in power plants. In: A. Shirzadi, S. Jackson, eds. Structural Alloys in Power Plants: Operational Challenges and High-Temperature Materials. Cambridge, UK: Woodhead Publishing Limited, 2014: 250−293
2   R. Blum, R. W. Vanstone. Materials development for boilers and steam turbines operating at 700°C. In: Proceedings of the 6th International Charles Parsons Turbine Conference. Dublin, Ireland, 2003: 498−510
3   H. Tschaffon. The European way to 700°C coal fired power plant. In: Proceedings of the 8th Liege Conference on Materials for Advanced Power Engineering 2006. Liege, Belgium, 2006: 61−67
4   G. Gierschner, C. Ulrich, H. Tschaffon, F. Hansknecht. Latest developments for the flexible high efficient power plant of the future. In: Proceedings of the 38th MPA Seminar. Stuttgart, Germany, 2012: 353−373
5   K. Metzger, K. H. Czychon, K. Maile, A. Klenk, A. Helmrich, Q. Chen. GKM test rig: Investigation of the long term operation behavior of tubes and forgings made of alloys for future high efficient power plants. In: D. Gandy, J. Shingledecker, R. Viswanathan, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference. Materials Park, OH: ASM International, 2013: 86−95
6   A. Di Gianfrancesco, A. Tizzanini, M. Jedamzik, C. Stolzenberger. ENCIO project: An European approach to 700°C power plant. In: D. Gandy, J. Shingledecker, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference. Materials Park, OH: ASM International, 2013: 9−23
7   R. Viswanathan, J. F. Henry, J. Tanzosh, G. Stanko, J. Shingledecker, B. Vitalis. U.S. program on materials technology for USC power plants. In: R. Viswanathan, D. Gandy, K. Coleman, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference. Materials Park, OH: ASM International, 2005: 3−19
8   R. Viswanathan, J. Shingledecker, J. Hawk, S. Goodstein. Effect of creep in advanced materials for use in ultrasupercritical coal power plants. In: I. A. Shibli, S. R. Holdsworth, eds. Creep & Fracture in High Temperature Components—Design & Life Assessment Issues: Proceedings of the 2nd ECCC Creep Conference. Lancaster, PA: DEStech Publications, Inc., 2009: 31−43
9   J. Shingledecker, R. Purgert, P. Rawls. Current status of the U.S. DOE/OCDO A-USC materials technology research and development program. In: D. Gandy, J. Shingledecker, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference. Materials Park, OH: ASM International, 2013: 41−52
10   M. Fukuda, Advanced USC technology development in Japan. In: D. Gandy, J. Shingledecker, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference. Materials Park, OH: ASM International, 2013: 24−40
11   R. Sun, Z. Cui, Y. Tao. Progress of China 700°C USC development program. In: D. Gandy, J. Shingledecker, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference. Materials Park, OH: ASM International, 2013: 1−8
12   Z. Liu, H. Bao, G. Yang, S. Xu, Q. Wang, Y. Yang. Material advancement used for 700°C A-USC-PP in China. In: D. Gandy, J. Shingledecker, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference. Materials Park, OH: ASM International, 2013: 171−179
13   A. Mathur, O. P. Bhutani, T. Jayakumar, D. K. Dubey, S. C. Chetal. India’s national A-USC mission—Plan and progress. In: D. Gandy, J. Shingledecker, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference. Materials Park, OH: ASM International, 2013: 53−59
14   F. Abe. Grade 91 heat-resistant martensitic steel. In: A. Shibli, ed. Coal Power Plant Materials and Life Assessment: Developments and Applications. Cambridge, UK: Woodhead Publishing Limited, 2014: 3−51
15   American Society of Mechanical Engineers. ASME Boiler and Pressure Vessel Code, Section II— Materials, Part D— Properties (Metric). New York: The American Society of Mechanical Engineers, 2013
16   F. Abe. Stress to produce minimum creep rate of 10−5%/h and stress to cause rupture at 105 h for ferritic and austenitic steels and superalloys. Int. J. Pres. Ves. Pip., 2008, 85(1−2): 99−107
17   X. Xie, S. Zhao, J. Dong, G. D. Smith, B. A. Baker, S. L. Patel. A new improvement of Inconel Alloy 740 for USC power plants. In: R. Viswanathan, D. Gandy, K. Coleman, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference. Materials Park, OH: ASM International, 2007: 220−230
18   S. Zhao, F. Lin, R. Fu, C. Chi, X. Xie. Microstructure evolution and precipitates stability in Inconel Alloy 740H during creep. In: D. Gandy, J. Shingledecker, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference. Materials Park, OH: ASM International, 2013: 265−275
19   S. K. Srivastava, J. L. Caron, L. M. Pike. Recent developments in the characteristics of Haynes 282 alloy for use in A-USC applications. In: D. Gandy, J. Shingledecker, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference. Materials Park, OH: ASM International, 2013: 120−130
20   M. Igarashi. Alloy design philosophy of creep-resistant steels. In: F. Abe, T. U. Kern, R. Viswanathan, eds. Creep-Resistant Steels. Cambridge, UK: Woodhead Publishing Limited, 2008: 539−572
21   H. Semba, H. Okada, M. Yonemura, M. Igarashi. Creep strength and microstructure in 23Cr-43Ni-7W alloy (HR6W) and Ni-base superalloys for advanced USC boilers. In: Proceedings of the 34th MPA Seminar. Stuttgart, Germany, 2008: 14.1−14.18
22   R. Yamamoto, Development of Ni-based superalloy for advanced 700°C-class steam turbines. In: R. Viswanathan, D. Gandy, K. Coleman, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference. Materials Park, OH: ASM International, 2007: 434−446
23   R. Yamamoto, Alloy design and material properties of Ni-based superalloy with low thermal expansion for steam turbine. Tetsu-to-Hagane, 2004, 90(1): 37−42
24   T. Ohno, Development of low thermal expansion Ni base superalloy for steam turbine applications. In: R. Viswanathan, D. Gandy, K. Coleman, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference. Materials Park, OH: ASM International, 2007: 377−390
25   S. Imano, J. Sato, K. Kajikawa, T. Takahashi. Mechanical properties and manufacturability of Ni-Fe base superalloy (FENIX-700) for A-USC steam turbine rotor large forgings. In: R. Viswanathan, D. Gandy, K. Coleman, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference. Materials Park, OH: ASM International, 2007: 424−433
26   S. Miyashita, M. Yamada, T. Suga, K. Imai, K. Nemoto, Y. Yoshioka. Development of a rotor alloy for advanced ultra super critical turbine power generation system. In: Proceedings of the 34th MPA Seminar. Stuttgart, Germany, 2008: 15.1−15.12
27   J. P. Shingledecker. Creep-rupture performance of Inconel Alloy 740 and welds. In: D. Gandy, J. Shingledecker, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference. Materials Park, OH: ASM International, 2013: 230−241
28   P. F. Tortorelli, K. A. Unocic, H. Wang, M. L. Santella, J. P. Shingledecker. Creep-rupture behavior of precipitation-strengthened Ni-based alloys under advanced ultrasupercritical steam conditions. In: D. Gandy, J. Shingledecker, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference. Materials Park, OH: ASM International, 2013: 131−142
29   J. P. Shingledecker, G. M. Pharr. Testing and analysis of full-scale creep-rupture experiments on Inconel Alloy 740 cold-formed tubing. J. Mater. Eng. Perform., 2013, 22(2): 454−462
30   J. Shingledecker. Creep-rupture behavior of Ni-based alloy tube bends for A-USC boilers. In: The Chinese Society for Metals (CSM) and the Minerals, Metals & Materials Society (TMS): Proceedings of Energy Materials 2014. Xi’an, China, 2014: 161−168
31   K. Kubushiro, K. Nomura, H. Nakagawa. Effect of cold work on creep strength of nickel base alloys. In: J. Lecomte-Beckers, O. Dedry, J. Oakey, B. Kuhn, eds. Proceedings of 10th Liege Conference on Materials for Advanced Power Engineering 2014. Liege, Belgium, 2014: 754−756
32   S. Zhang, Y. Takahashi. Evaluation of high temperature strength of a Ni-base Alloy 740H for advanced ultra-supercritical power plant. In: D. Gandy, J. Shingledecker, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference. Materials Park, OH: ASM International, 2013: 242−253
33   S. Chandra, R. Cotgrove, S. R. Holdsworth, M. Schwienheer, M. W. Spindler. Creep rupture data assessment of Alloy 617. In: Proceedings of ECCC Creep Conference: Creep and Fracture in High Temperature Components—Design and Life Assessment Issues. London, UK, 2005: 178−188
34   M. Speicher, A. Klenk, K. Maile, E. Roos. Investigations on advanced materials for 700°C steam power plant components. In: Proceedings of the 3rd Symposium on Heat Resistant Steels and Alloys for High Efficiency USC Power Plants 2009. Tsukuba, Japan, 2009
35   T. Uehara, C. Aoki, T. Ohno, P. Schraven, H. Kamoshida, S. Imano. Creep rupture properties of Ni-base superalloy USC141 as solution treated for 700°C class A-USC boiler. In: D. Gandy, J. Shingledecker, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference. Materials Park, OH: ASM International, 2013: 1407−1416
36   R. Yamamoto, Development and trial manufacturing of Ni-based superalloy “LTES700R” for advanced 700°C class steam turbines. In: D. Gandy, J. Shingledecker, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference. Materials Park, OH: ASM International, 2013: 468−481
37   K. Takasawa, T. Takahashi, R. Tanaka, T. Kure, S. Imano, E. Saito. Trial production and evaluation of 10-ton class A-USC turbine rotor of Ni-Fe base superalloy FENIX-700. In: D. Gandy, J. Shingledecker, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference. Materials Park, OH: ASM International, 2013: 1283−1291
38   S. Miyashita, Y. Yoshioka, T. Kubo. Development and evaluation of large-scale rotor forging for over 700°C-class A-USC steam turbine. In: D. Gandy, J. Shingledecker, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference. Materials Park, OH: ASM International, 2013: 436−447
39   Y. Noguchi, M. Miyahara, H. Okada, M. Igarashi, K. Ogawa. Creep-fatigue properties of Fe-Ni base 0.08C-23Cr-45Ni-7W alloy for piping in 700°C A-USC power plants. In: Proceedings of the Eighth International Conference on Creep and Fatigue at Elevated Temperatures. San Antonio, TX, USA, 2007: 261−266
40   H. Okada, T. Hamaguchi, H. Hirata, M. Yoshizawa. Development of HR6W and its applicability for thick-wall component for advanced USC boilers. In: Proceedings of the 40th MPA Seminar. Stuttgart, Germany, 2014: 137−146
41   F. Abe. Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plant. Sci. Technol. Adv. Mater., 2008, 9(1): 013002
42   T. Sato, K. Tamura, Y. Fukuda, K. Asakura, T. Fujita. Development of low-C 9Cr steel for USC boilers. CAMP-ISIJ, 2006, 19: 565 (in Japanese)
43   K. Metzger, K. H. Czychon, E. Roos, K. Maile. Testing for the investigation of the damage mechanism of high-temperature for the 700°C power plant. In: Proceedings of the 34th MPA Seminar. Stuttgart, Germany, 2008: 48.1−48.12
44   M. Igarashi, Y. Sawaragi. Development of 0.1C-11Cr-3W-3Co-V-Nb-Ta-Nd-N ferritic steel for USC boilers. In: Proceedings of International Conference on Power Engineering-97 (ICOPE-97). Tokyo, Japan, 1997: 107−112
45   K. H. Mayer, F. Masuyama. The development of creep-resistant steels. In: F. Abe, T. U. Kern, R. Viswanathan, eds. Creep-Resistant Steels. Cambridge, UK: Woodhead Publishing Limited, 2008: 15−77
46   T. U. Kern, K. H. Mayer, B. Donth, G. Zeiler, A. Di Gianfrancesco. The European efforts in development of new high temperature rotor materials COST536. In: J. Lecomte-Beckers, Q. Contrepois, T. Beck, B. Kuhn, eds. Proceedings of 9th Liege Conference on Materials for Advanced Power Engineering 2010. Liege, Belgium, 2010: 27−36
47   P. Barnard, A new MarBN alloy for USC power plant. In: Proceedings of 5th Symposium on Heat Resistant Steels and Alloys for High Efficiency USC/A-USC Power Plants 2013. Seoul, Korea, 2013: 31
48   E. Zanin, Component performance-driven solutions for long-term efficiency increase in ultra supercritical power plants Macplus Project. In: J. Lecomte-Beckers, O. Dedry, J. Oakey, B. Kuhn, eds. Proceedings of 10th Liege Conference on Materials for Advanced Power Engineering 2014. Liege, Belgium, 2014: 803−819
49   C. Sommitsch, Co-ordination of European research in structural materials for power generation equipment. In: J. Lecomte-Beckers, O. Dedry, J. Oakey, B. Kuhn, eds. Proceedings of 10th Liege Conference on Materials for Advanced Power Engineering 2014. Liege, Belgium, 2014: 3−18
50   E. Plesiutschunig, C. Beal, S. Paul, G. Zeiler, S. Mitsche, C. Sommitsch. Microstructure for an optimized creep rupture strength of high Cr steels. In: J. Lecomte-Beckers, O. Dedry, J. Oakey, B. Kuhn, eds. Proceedings of 10th Liege Conference on Materials for Advanced Power Engineering 2014. Liege, Belgium, 2014: 180−188
51   P. Yan, Z. Liu, Y. Weng. Effect of preferential heat treatment on microstructure of new martensitic heat resistant steel G115. In:The Chinese Society for Metals (CSM) and the Minerals, Metals & Materials Society (TMS): Proceedings of Energy Materials 2014. Xi’an, China, 2014: 137−144
52   F. Abe. Effect of boron on long-term stability of 9Cr steel for 650°C boilers. In: Proceedings of the 38th MPA Seminar. Stuttgart, Germany, 2012: 305−314
53   F. Abe, M. Tabuchi, S. Tsukamoto. Alloy design of martensitic 9Cr-Boron steel for A-USC boiler at 650°C—Beyond Grades 91, 92 and 122. In: The Chinese Society for Metals (CSM) and the Minerals, Metals & Materials Society (TMS): Proceedings of Energy Materials 2014. Xi’an, China, 2014: 129−136
54   M. Tabuchi, H. Hongo, F. Abe. Creep strength of dissimilar welded joints using high B-9Cr steel for advanced USC boiler. Metall. Mater. Trans. A, 2014, 45(11): 5068−5075
55   Y. Gu, G. D. West, R. C. Thomson, J. Parker. Investigation of creep damage and cavitation mechanisms in P92 steels. In: D. Gandy, J. Shingledecker, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference. Materials Park, OH: ASM International, 2013: 596−606
56   K. Sakuraya, H. Okada, F. Abe. BN type inclusions formed in high Cr ferritic heat resistant steel. Energy Materials, 2006, 1(3): 158−166
57   F. Abe, M. Tabuchi, S. Tsukamoto. Mechanisms for Boron effect on microstructure and creep strength of ferritic power plant steels. Energy Materials, 2009, 4(4): 166−174
58   H. Okubo, S. Muneki, T. Hara, H. Kutsumi, F. Abe. Improvement of oxidation resistance of 9% Cr steel for A-USC by pre-oxidation treatment. In: Proceedings of the 34th MPA Seminar. Stuttgart, Germany, 2008: 42.1−42.11
Related
[1] Patcharapit Promoppatum, Shi-Chune Yao, P. Chris Pistorius, Anthony D. Rollett. A Comprehensive Comparison of the Analytical and Numerical Prediction of the Thermal History and Solidification Microstructure of Inconel 718 Products Made by Laser Powder-Bed Fusion[J]. Engineering, 2017, 3(5): 685 -694 .
[2] Quy Bau Nguyen, Mui Ling Sharon Nai, Zhiguang Zhu, Chen-Nan Sun, Jun Wei, Wei Zhou. Characteristics of Inconel Powders for Powder-Bed Additive Manufacturing[J]. Engineering, 2017, 3(5): 695 -700 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
京ICP备11030251号-2

 Engineering