Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2015, Vol. 1 Issue (3) : 378 -383
Research |
Single-Seed Casting Large-Size Monocrystalline Silicon for High-Efficiency and Low-Cost Solar Cells
Bing Gao1,(),Satoshi Nakano1,Hirofumi Harada2,Yoshiji Miyamura2,Takashi Sekiguchi2,Koichi Kakimoto1
1. Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
2. National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 Japan

To grow high-quality and large-size monocrystal-line silicon at low cost, we proposed a single-seed casting technique. To realize this technique, two challenges—polycrystalline nucleation on the crucible wall and dislocation multiplication inside the crystal—needed to be addressed. Numerical analysis was used to develop solutions for these challenges. Based on an optimized furnace structure and operating conditions from numerical analysis, experiments were performed to grow monocrystalline silicon using the single-seed casting technique. The results revealed that this technique is highly superior to the popular high-performance multicrystalline and multiseed casting mono-like techniques.

Keywords single-seed casting      monocrystalline silicon      polycrystalline nucleation      dislocation multiplication      multicrystalline silicon     
Corresponding Authors: Bing Gao   
Just Accepted Date: 17 September 2015   Issue Date: 16 October 2015
E-mail this article
E-mail Alert
Articles by authors
Bing Gao
Satoshi Nakano
Hirofumi Harada
Yoshiji Miyamura
Takashi Sekiguchi
Koichi Kakimoto
Cite this article:   
Bing Gao,Satoshi Nakano,Hirofumi Harada, et al. Single-Seed Casting Large-Size Monocrystalline Silicon for High-Efficiency and Low-Cost Solar Cells[J]. Engineering, 2015, 1(3): 378 -383 .
URL:     OR
1   Fraunhofer Institute for Solar Energy Systems ISE. Photovoltaic report. Freiburg: Fraunhofer ISE, 2014: 3–4
2   N. Stoddard,  Casting single crystal silicon: Novel defect profiles from BP Solar’s Mono2 TM wafers. Solid State Phenom., 2007, 131−133: 1–8
3   N. Stoddard, B. Wu, L. Maisano, R. Russell, R. Clark, J. M. Fernandez. The leading edge of silicon casting technology and BP Solar’s Mono2 wafers. In: B. L. Sopori, , eds. Proceedings of the 18th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes. Colorado: National Renewable Energy Laboratory, 2008: 7–14
4   N. Stoddard,  Evaluating BP Solar’s Mono2 TM materials: Lifetime and cell electrical data. In: Proceedings of the 34th IEEE Photovoltaic Specialists Conference. Philadelphia: IEEE, 2009: 1163–1168
5   D. Zhu, L. Ming, M. Huang, Z. Zhang, X. Huang. Seed-assisted growth of high-quality multi-crystalline silicon in directional solidification. J. Cryst. Growth, 2014, 386: 52–56 
6   X. Gu, X. Yu, K. Guo, L. Chen, D. Wang, D. Yang. Seed-assisted cast quasi-single crystalline silicon for photovoltaic application: Towards high efficiency and low cost silicon solar cells. Sol. Energ. Mat. Sol. C., 2012, 101: 95–101
7   K. Kutsukake, N. Usami, Y. Ohno, Y. Tokumoto, I. Yonenaga. Control of grain boundary propagation in mono-like Si: Utilization of functional grain boundaries. Appl. Phys. Express, 2013, 6(2): 025505
8   K. Kutsukake, N. Usami, Y. Ohno, Y. Tokumoto, I. Yonenaga. Mono-like silicon growth using functional grain boundaries to limit area of multicrystalline grains. J. Photovolt., 2014, 4(1): 84–87
9   M. G. Tsoutsouva,  Segregation, precipitation and dislocation generation between seeds in directionally solidified mono-like silicon for photovoltaic applications. J. Cryst. Growth, 2014, 401: 397–403
10   G. Stokkan, Y. Hu, Ø. Mjøs, M. Juel. Study of evolution of dislocation clusters in high performance multicrystalline silicon. Sol. Energ. Mat. Sol. C., 2014, 130: 679–685
11   Y. M. Yang, A. Yu, B. Hsu, W. C. Hsu, A. Yang, C. W. Lan. Development of high-performance multicrystalline silicon for photovoltaic industry. Prog. Photovolt. Res. Appl., 2015, 23(3): 340–351
12   B. Gao, S. Nakano, H. Harada, Y. Miyamura, T. Sekiguchi, K. Kakimoto. Dislocation analysis of a new method for growing large-size crystals of monocrystalline silicon using a seed casting technique. Cryst. Growth Des., 2012, 12(12): 6144–6150
13   B. Gao, S. Nakano, H. Harada, Y. Miyamura, T. Sekiguchi, K. Kakimoto. Reduction of polycrystalline grains region near the crucible wall during seeded growth of monocrystalline silicon in a unidirectional solidification furnace. J. Cryst. Growth, 2012, 352(1): 47–52
14   V. R. Voller, M. Cross, N. C. Markatos. An ent<?Pub Caret?>halpy method for convection/diffusion phase change. Int. J. Numer. Methods Eng., 1987, 24(1): 271–284
15   J. P. Garandet. On the thermal stresses in vertical gradient freeze furnaces. J. Cryst. Growth, 1989, 96(3): 680–684
16   Y. Miyamura,  Crystal growth of 50 cm square mono-like Si by directional solidification and its characterization. J. Cryst. Growth, 2014, 401: 133–136
17   B. Gao, S. Nakano, K. Kakimoto. Effect of crucible cover material on impurities of multicrystalline silicon in a unidirectional solidification furnace. J. Cryst. Growth, 2011, 318(1): 255–258
[1] Zhuo Cheng, Lang Qin, Jonathan A. Fan, Liang-Shih Fan. New Insight into the Development of Oxygen Carrier Materials for Chemical Looping Systems[J]. Engineering, 2018, 4(3): 343 -351 .
[2] Jennifer A. Clark, Erik E. Santiso. Carbon Sequestration through CO2 Foam-Enhanced Oil Recovery: A Green Chemistry Perspective[J]. Engineering, 2018, 4(3): 336 -342 .
[3] Andrea Di Maria, Karel Van Acker. Turning Industrial Residues into Resources: An Environmental Impact Assessment of Goethite Valorization[J]. Engineering, 2018, 4(3): 421 -429 .
[4] Lance A. Davis. Falcon Heavy[J]. Engineering, 2018, 4(3): 300 .
[5] Augusta Maria Paci. A Research and Innovation Policy for Sustainable S&T: A Comment on the Essay ‘‘Exploring the Logic and Landscape of the Knowledge System”[J]. Engineering, 2018, 4(3): 306 -308 .
[6] Ning Duan. When Will Speed of Progress in Green Science and Technology Exceed that of Resource Exploitation and Pollutant Generation?[J]. Engineering, 2018, 4(3): 299 .
[7] Jian-guo Li, Kai Zhan. Intelligent Mining Technology for an Underground Metal Mine Based on Unmanned Equipment[J]. Engineering, 2018, 4(3): 381 -391 .
[8] Veena Sahajwalla. Green Processes: Transforming Waste into Valuable Resources[J]. Engineering, 2018, 4(3): 309 -310 .
[9] Junye Wang, Hualin Wang, Yi Fan. Techno-Economic Challenges of Fuel Cell Commercialization[J]. Engineering, 2018, 4(3): 352 -360 .
[10] Raymond RedCorn, Samira Fatemi, Abigail S. Engelberth. Comparing End-Use Potential for Industrial Food-Waste Sources[J]. Engineering, 2018, 4(3): 371 -380 .
[11] Ning Duan, Linhua Jiang, Fuyuan Xu, Ge Zhang. A Non-Contact Original-State Online Real-Time Monitoring Method for Complex Liquids in Industrial Processes[J]. Engineering, 2018, 4(3): 392 -397 .
[12] Keith E. Gubbins, Kai Gu, Liangliang Huang, Yun Long, J. Matthew Mansell, Erik E. Santiso, Kaihang Shi, Małgorzata Ś liwińska-Bartkowiak, Deepti Srivastava. Surface-Driven High-Pressure Processing[J]. Engineering, 2018, 4(3): 311 -320 .
[13] Steff Van Loy, Koen Binnemans, Tom Van Gerven. Mechanochemical-Assisted Leaching of Lamp Phosphors: A Green Engineering Approach for Rare-Earth Recovery[J]. Engineering, 2018, 4(3): 398 -405 .
[14] Robert S. Weber, Johnathan E. Holladay. Modularized Production of Value-Added Products and Fuels from Distributed Waste Carbon-Rich Feedstocks[J]. Engineering, 2018, 4(3): 330 -335 .
[15] Hualin Wang, Pengbo Fu, Jianping Li, Yuan Huang, Ying Zhao, Lai Jiang, Xiangchen Fang, Tao Yang, Zhaohui Huang, Cheng Huang. Separation-and-Recovery Technology for Organic Waste Liquid with a High Concentration of Inorganic Particles[J]. Engineering, 2018, 4(3): 406 -415 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.