Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2015, Vol. 1 Issue (3) : 384 -390
Research |
Effects of Vapor Pressure and Super-Hydrophobic Nanocomposite Coating on Microelectronics Reliability
Xuejun Fan1,2,(),Liangbiao Chen1,C. P. Wong3,Hsing-Wei Chu1,G. Q. Zhang4,5
1. Department of Mechanical Engineering, Lamar University, Beaumont, TX 77710, USA
2. State Key Laboratory of Solid State Lighting, Beijing 100083, China
3. School of Materials Science and Engineering, Georgia Tech, Atlanta, GA 30332-0245, USA
4. Delft University of Technology, Delft 2600 AA, the Netherlands
5. Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China

Modeling vapor pressure is crucial for studying the moisture reliability of microelectronics, as high vapor pressure can cause device failures in environments with high temperature and humidity. To minimize the impact of vapor pressure, a super-hydrophobic (SH) coating can be applied on the exterior surface of devices in order to prevent moisture penetration. The underlying mechanism of SH coating for enhancing device reliability, however, is still not fully understood. In this paper, we present several existing theories for predicting vapor pressure within microelectronic materials. In addition, we discuss the mechanism and effectiveness of SH coating in preventing water vapor from entering a device, based on experimental results. Two theoretical models, a micro-mechanics-based whole-field vapor pressure model and a convection-diffusion model, are described for predicting vapor pressure. Both methods have been successfully used to explain experimental results on uncoated samples. However, when a device was coated with an SH nanocomposite, weight gain was still observed, likely due to vapor penetration through the SH surface. This phenomenon may cast doubt on the effectiveness of SH coatings in microelectronic devices. Based on current theories and the available experimental results, we conclude that it is necessary to develop a new theory to understand how water vapor penetrates through SH coatings and impacts the materials underneath. Such a theory could greatly improve microelectronics reliability.

Keywords vapor pressure      moisture      semiconductor reliability      microelectromechanical systems (MEMS)      super-hydrophobic      nanocomposite coating     
Corresponding Authors: Xuejun Fan   
Just Accepted Date: 08 October 2015   Issue Date: 16 October 2015
E-mail this article
E-mail Alert
Articles by authors
Xuejun Fan
Liangbiao Chen
C. P. Wong
Hsing-Wei Chu
G. Q. Zhang
Cite this article:   
Xuejun Fan,Liangbiao Chen,C. P. Wong, et al. Effects of Vapor Pressure and Super-Hydrophobic Nanocomposite Coating on Microelectronics Reliability[J]. Engineering, 2015, 1(3): 384 -390 .
URL:     OR
1   X. Q. Shi, Y. L. Zhang, W. Zhou, X. J. Fan. Effect of hygrothermal aging on interfacial reliability of silicon/underfill/FR-4 assembly. IEEE T. Compon. Pack. T., 2008, 31(1): 94–103
2   X. J. Fan, E. Suhir. Moisture Sensitivity of Plastic Packages of IC Devices. New York: Springer, 2010.
3   X. J. Fan, G. Q. Zhang, W. D. van Driel, L. J. Ernst. Interfacial delamination mechanisms during soldering reflow with moisture preconditioning. IEEE T. Compon. Pack. T., 2008, 31(2): 252–259
4   W. D. van Driel, M. A. J. van Gils, X. J. Fan, G. Q. Zhang, L. J. Ernst. Driving mechanisms of delamination related reliability problems in exposed pad packages. IEEE T. Compon. Pack. T.,  2008, 31(2): 260–268
5   B. Xie, X. J. Fan, X. Q. Shi, H. Ding. Direct concentration approach of moisture diffusion and whole-field vapor pressure modeling for reflow process-Part I: Theory and numerical implementation. J. Electron. Packag., 2009, 131(3): 031010.1–031010.7
6   B. Xie, X. J. Fan, X. Q. Shi, H. Ding. Direct concentration approach of moisture diffusion and whole-field vapor pressure modeling for reflow process-Part II: Application to 3D ultrathin stacked-die chip scale packages. J. Electron. Packag., 2009, 131(3): 031011.1–031011.6
7   L. S. Zhu, J. Zhou, X. J. Fan. Rupture and instability of soft films due to moisture vaporization in microelectronic devices. Computers, Materials & Continua, 2014, 39(2): 113–134
8   Y. H.  Xiu, L. B.  Zhu, D. W.  Hess, C. P.  Wong. Superhydrophobic durable silica thin films from sol-gel processing for the application in antistiction of MEMS devices. Abstracts of Papers of the American Chemical Society, 2006: 231
9   Y. Liu, W. Lin, Z. Lin, Y. Xiu, C. P. Wong. A combined etching process toward robust superhydrophobic SiC surfaces. Nanotechnology, 2012, 23(25): 255703
10   Y. Liu, Z. Lin, W. Lin, K. S. Moon, C. P. Wong. Reversible superhydrophobic-superhydrophilic transition of ZnO nanorod/epoxy composite films. ACS Appl. Mater. Interfaces, 2012, 4(8): 3959–3964
11   Y. Liu, Z. Lin, K. S. Moon, C. P. Wong. Superhydrophobic nanocomposite coating for reliability improvement of microelectronics. IEEE Trans. Compon. Packag. Manuf. Tech., 2013, 3(7): 1079–1083
12   Y. H. Xiu, Y. Liu, B. Balu, D. W. Hess, C. P. Wong. Robust superhydrophobic surfaces prepared with epoxy resin and silica nanoparticles. IEEE Trans. Compon. Packag. Manuf. Tech., 2012, 2(3): 395–401
13   Y. Liu, Y. Xiu, D. W. Hess, C. P. Wong. Silicon surface structure-controlled oleophobicity. Langmuir, 2010, 26(11): 8908–8913
14   X. J. Feng, L. Jiang. Design and creation of superwetting/antiwetting surfaces. Adv. Mater., 2006, 18(23): 3063–3078
15   L. Gao, T. J. McCarthy. The “lotus effect” explained: Two reasons why two length scales of topography are important. Langmuir, 2006, 22(7): 2966–2967
16   X. J. Fan, S. W. R. Lee, Q. Han. Experimental investigations and model study of moisture behaviors in polymeric materials. Microelectron. Reliab., 2009, 49(8): 861–871
17   E. H. Wong, S. W. Koh, K. H. Lee, K.-M. Lim, T. B. Lim, Y.-W. Mai. Advances in vapor pressure modeling for electronic packaging. IEEE Trans. Adv. Packag., 2006, 29(4): 751–759
18   L. Chen, H. W. Chu, X. J. Fan. A convection-diffusion porous media model for moisture transport in polymer composites: Model development and validation. J. Polym. Sci. Pol. Phys., 2015, 53(20): 1440–1449
19   X. J. Fan, J. Zhou, G. Q. Zhang, L. J. Ernst. A micromechanics-based vapor pressure model in electronic packages. J. Electron. Packag., 2005, 127(3): 262–267
20   J. Adams, L. Chen, X. J. Fan. Vapor pressure prediction for stacked-chip packages in reflow by convection-diffusion model. In: Proceedings of the 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE). Budapest, Hungary, 2015
21   Y. Wu, N. Katsube. A thermomechanical model for chemically decomposing composites—I. Theory. Int. J. Eng. Sci., 1997, 35(2): 113–128
22   R. M. Sullivan. The effect of water on thermal stresses in polymer composites. J. Appl. Mech., 1996, 63(1): 173–179
23   G. K. van der Wel, O. C. G. Adan. Moisture in organic coatings—A review. Prog. Org. Coat., 1999, 37(1−2): 1–14
24   H. B. Hopfenberg, H. L. Frisch. Transport of organic micromolecules in amorphous polymers. J. Polym. Sci., Part B. Polym. Lett., 1969, 7(6): 405–409
25   L. Chen, J. H. Lee, C. F. Chen. On the modeling of surface tension and its applications by the Generalized Interpolation Material Point Method. CMES-Comp. Model. Eng., 2012, 86(3): 199–224
26   L. Chen. Using the generalized interpolation material point method for fluid-solid interactions induced by surface tension (Doctoral desseration). Fairbanks, AK: University of Alaska Fairbanks, 2013
27   C. P. Wong. High-performance silicone gel as IC device chip protection-cure study and electrical reliability. Abstracts of Papers of the American Chemical Society, 1988: 102
28   R. G. Mancke. A moisture protection screening test for hybrid circuit encapsulants. IEEE Trans. Compon. Hybrids Manuf. Technol., 1981, 4(4): 492–498
29   J. L. Wu, R. T. Pike, C. P. Wong, N. P. Kim, M. H. Tanielian. Evaluation and characterization of reliable non-hermetic conformal coatings for microelectromechanical system (MEMS) device encapsulation. IEEE Trans. Adv. Packag., 2000, 23(4): 721–728
30   R. N. Wenzel. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem., 1936, 28(8): 988–994
31   A. B. D. Cassie, S. Baxter. Wettability of porous surfaces. Trans. Faraday Soc., 1944, 40: 546–551
[1] Holger Krueger. Standardization for Additive Manufacturing in Aerospace[J]. Engineering, 2017, 3(5): 585 .
[2] Joe A. Sestak Jr.. High School Students from 157 Countries Convene to Address One of the 14 Grand Challenges for Engineering: Access to Clean Water[J]. Engineering, 2017, 3(5): 583 -584 .
[3] Lance A. Davis. Climate Agreement—Revisited[J]. Engineering, 2017, 3(5): 578 -579 .
[4] Ben A. Wender, M. Granger Morgan, K. John Holmes. Enhancing the Resilience of Electricity Systems[J]. Engineering, 2017, 3(5): 580 -582 .
[5] Jin-Xun Liu, Peng Wang, Wayne Xu, Emiel J. M. Hensen. Particle Size and Crystal Phase Effects in Fischer-Tropsch Catalysts[J]. Engineering, 2017, 3(4): 467 -476 .
[6] Luis Ribeiro e Sousa, Tiago Miranda, Rita Leal e Sousa, Joaquim Tinoco. The Use of Data Mining Techniques in Rockburst Risk Assessment[J]. Engineering, 2017, 3(4): 552 -558 .
[7] Maggie Bartolomeo. Third Global Grand Challenges Summit for Engineering[J]. Engineering, 2017, 3(4): 434 -435 .
[8] Michael Powalla, Stefan Paetel, Dimitrios Hariskos, Roland Wuerz, Friedrich Kessler, Peter Lechner, Wiltraud Wischmann, Theresa Magorian Friedlmeier. Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2[J]. Engineering, 2017, 3(4): 445 -451 .
[9] Raffaella Ocone. Reconciling “Micro” and “Macro” through Meso-Science[J]. Engineering, 2017, 3(3): 281 -282 .
[10] Baoning Zong, Bin Sun, Shibiao Cheng, Xuhong Mu, Keyong Yang, Junqi Zhao, Xiaoxin Zhang, Wei Wu. Green Production Technology of the Monomer of Nylon-6: Caprolactam[J]. Engineering, 2017, 3(3): 379 -384 .
[11] Pengcheng Xu, Yong Jin, Yi Cheng. Thermodynamic Analysis of the Gasification of Municipal Solid Waste[J]. Engineering, 2017, 3(3): 416 -422 .
[12] Lei Xu, Jinhui Peng, Hailong Bai, C. Srinivasakannan, Libo Zhang, Qingtian Wu, Zhaohui Han, Shenghui Guo, Shaohua Ju, Li Yang. Application of Microwave Melting for the Recovery of Tin Powder[J]. Engineering, 2017, 3(3): 423 -427 .
[13] Ee Teng Kho, Salina Jantarang, Zhaoke Zheng, Jason Scott, Rose Amal. Harnessing the Beneficial Attributes of Ceria and Titania in a Mixed-Oxide Support for Nickel-Catalyzed Photothermal CO2 Methanation[J]. Engineering, 2017, 3(3): 393 -401 .
[14] Ke Dang, Tuo Wang, Chengcheng Li, Jijie Zhang, Shanshan Liu, Jinlong Gong. Improved Oxygen Evolution Kinetics and Surface States Passivation of Ni-Bi Co-Catalyst for a Hematite Photoanode[J]. Engineering, 2017, 3(3): 285 -289 .
[15] Mu Xiao, Songcan Wang, Supphasin Thaweesak, Bin Luo, Lianzhou Wang. Tantalum (Oxy)Nitride: Narrow Bandgap Photocatalysts for Solar Hydrogen Generation[J]. Engineering, 2017, 3(3): 365 -378 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.