Please wait a minute...
Submit  |   Chinese  | 
 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2015, Vol. 1 Issue (3) : 384 -390     https://doi.org/10.15302/J-ENG-2015034
Research |
Effects of Vapor Pressure and Super-Hydrophobic Nanocomposite Coating on Microelectronics Reliability
Xuejun Fan1,2,(),Liangbiao Chen1,C. P. Wong3,Hsing-Wei Chu1,G. Q. Zhang4,5
1. Department of Mechanical Engineering, Lamar University, Beaumont, TX 77710, USA
2. State Key Laboratory of Solid State Lighting, Beijing 100083, China
3. School of Materials Science and Engineering, Georgia Tech, Atlanta, GA 30332-0245, USA
4. Delft University of Technology, Delft 2600 AA, the Netherlands
5. Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract
Abstract  

Modeling vapor pressure is crucial for studying the moisture reliability of microelectronics, as high vapor pressure can cause device failures in environments with high temperature and humidity. To minimize the impact of vapor pressure, a super-hydrophobic (SH) coating can be applied on the exterior surface of devices in order to prevent moisture penetration. The underlying mechanism of SH coating for enhancing device reliability, however, is still not fully understood. In this paper, we present several existing theories for predicting vapor pressure within microelectronic materials. In addition, we discuss the mechanism and effectiveness of SH coating in preventing water vapor from entering a device, based on experimental results. Two theoretical models, a micro-mechanics-based whole-field vapor pressure model and a convection-diffusion model, are described for predicting vapor pressure. Both methods have been successfully used to explain experimental results on uncoated samples. However, when a device was coated with an SH nanocomposite, weight gain was still observed, likely due to vapor penetration through the SH surface. This phenomenon may cast doubt on the effectiveness of SH coatings in microelectronic devices. Based on current theories and the available experimental results, we conclude that it is necessary to develop a new theory to understand how water vapor penetrates through SH coatings and impacts the materials underneath. Such a theory could greatly improve microelectronics reliability.

Keywords vapor pressure      moisture      semiconductor reliability      microelectromechanical systems (MEMS)      super-hydrophobic      nanocomposite coating     
Fund: 
Corresponding Authors: Xuejun Fan   
Just Accepted Date: 08 October 2015   Issue Date: 16 October 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xuejun Fan
Liangbiao Chen
C. P. Wong
Hsing-Wei Chu
G. Q. Zhang
Cite this article:   
Xuejun Fan,Liangbiao Chen,C. P. Wong, et al. Effects of Vapor Pressure and Super-Hydrophobic Nanocomposite Coating on Microelectronics Reliability[J]. Engineering, 2015, 1(3): 384 -390 .
URL:  
http://engineering.org.cn/EN/10.15302/J-ENG-2015034     OR     http://engineering.org.cn/EN/Y2015/V1/I3/384
References
1   X. Q. Shi, Y. L. Zhang, W. Zhou, X. J. Fan. Effect of hygrothermal aging on interfacial reliability of silicon/underfill/FR-4 assembly. IEEE T. Compon. Pack. T., 2008, 31(1): 94–103
2   X. J. Fan, E. Suhir. Moisture Sensitivity of Plastic Packages of IC Devices. New York: Springer, 2010.
3   X. J. Fan, G. Q. Zhang, W. D. van Driel, L. J. Ernst. Interfacial delamination mechanisms during soldering reflow with moisture preconditioning. IEEE T. Compon. Pack. T., 2008, 31(2): 252–259
4   W. D. van Driel, M. A. J. van Gils, X. J. Fan, G. Q. Zhang, L. J. Ernst. Driving mechanisms of delamination related reliability problems in exposed pad packages. IEEE T. Compon. Pack. T.,  2008, 31(2): 260–268
5   B. Xie, X. J. Fan, X. Q. Shi, H. Ding. Direct concentration approach of moisture diffusion and whole-field vapor pressure modeling for reflow process-Part I: Theory and numerical implementation. J. Electron. Packag., 2009, 131(3): 031010.1–031010.7
6   B. Xie, X. J. Fan, X. Q. Shi, H. Ding. Direct concentration approach of moisture diffusion and whole-field vapor pressure modeling for reflow process-Part II: Application to 3D ultrathin stacked-die chip scale packages. J. Electron. Packag., 2009, 131(3): 031011.1–031011.6
7   L. S. Zhu, J. Zhou, X. J. Fan. Rupture and instability of soft films due to moisture vaporization in microelectronic devices. Computers, Materials & Continua, 2014, 39(2): 113–134
8   Y. H.  Xiu, L. B.  Zhu, D. W.  Hess, C. P.  Wong. Superhydrophobic durable silica thin films from sol-gel processing for the application in antistiction of MEMS devices. Abstracts of Papers of the American Chemical Society, 2006: 231
9   Y. Liu, W. Lin, Z. Lin, Y. Xiu, C. P. Wong. A combined etching process toward robust superhydrophobic SiC surfaces. Nanotechnology, 2012, 23(25): 255703
10   Y. Liu, Z. Lin, W. Lin, K. S. Moon, C. P. Wong. Reversible superhydrophobic-superhydrophilic transition of ZnO nanorod/epoxy composite films. ACS Appl. Mater. Interfaces, 2012, 4(8): 3959–3964
11   Y. Liu, Z. Lin, K. S. Moon, C. P. Wong. Superhydrophobic nanocomposite coating for reliability improvement of microelectronics. IEEE Trans. Compon. Packag. Manuf. Tech., 2013, 3(7): 1079–1083
12   Y. H. Xiu, Y. Liu, B. Balu, D. W. Hess, C. P. Wong. Robust superhydrophobic surfaces prepared with epoxy resin and silica nanoparticles. IEEE Trans. Compon. Packag. Manuf. Tech., 2012, 2(3): 395–401
13   Y. Liu, Y. Xiu, D. W. Hess, C. P. Wong. Silicon surface structure-controlled oleophobicity. Langmuir, 2010, 26(11): 8908–8913
14   X. J. Feng, L. Jiang. Design and creation of superwetting/antiwetting surfaces. Adv. Mater., 2006, 18(23): 3063–3078
15   L. Gao, T. J. McCarthy. The “lotus effect” explained: Two reasons why two length scales of topography are important. Langmuir, 2006, 22(7): 2966–2967
16   X. J. Fan, S. W. R. Lee, Q. Han. Experimental investigations and model study of moisture behaviors in polymeric materials. Microelectron. Reliab., 2009, 49(8): 861–871
17   E. H. Wong, S. W. Koh, K. H. Lee, K.-M. Lim, T. B. Lim, Y.-W. Mai. Advances in vapor pressure modeling for electronic packaging. IEEE Trans. Adv. Packag., 2006, 29(4): 751–759
18   L. Chen, H. W. Chu, X. J. Fan. A convection-diffusion porous media model for moisture transport in polymer composites: Model development and validation. J. Polym. Sci. Pol. Phys., 2015, 53(20): 1440–1449
19   X. J. Fan, J. Zhou, G. Q. Zhang, L. J. Ernst. A micromechanics-based vapor pressure model in electronic packages. J. Electron. Packag., 2005, 127(3): 262–267
20   J. Adams, L. Chen, X. J. Fan. Vapor pressure prediction for stacked-chip packages in reflow by convection-diffusion model. In: Proceedings of the 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE). Budapest, Hungary, 2015
21   Y. Wu, N. Katsube. A thermomechanical model for chemically decomposing composites—I. Theory. Int. J. Eng. Sci., 1997, 35(2): 113–128
22   R. M. Sullivan. The effect of water on thermal stresses in polymer composites. J. Appl. Mech., 1996, 63(1): 173–179
23   G. K. van der Wel, O. C. G. Adan. Moisture in organic coatings—A review. Prog. Org. Coat., 1999, 37(1−2): 1–14
24   H. B. Hopfenberg, H. L. Frisch. Transport of organic micromolecules in amorphous polymers. J. Polym. Sci., Part B. Polym. Lett., 1969, 7(6): 405–409
25   L. Chen, J. H. Lee, C. F. Chen. On the modeling of surface tension and its applications by the Generalized Interpolation Material Point Method. CMES-Comp. Model. Eng., 2012, 86(3): 199–224
26   L. Chen. Using the generalized interpolation material point method for fluid-solid interactions induced by surface tension (Doctoral desseration). Fairbanks, AK: University of Alaska Fairbanks, 2013
27   C. P. Wong. High-performance silicone gel as IC device chip protection-cure study and electrical reliability. Abstracts of Papers of the American Chemical Society, 1988: 102
28   R. G. Mancke. A moisture protection screening test for hybrid circuit encapsulants. IEEE Trans. Compon. Hybrids Manuf. Technol., 1981, 4(4): 492–498
29   J. L. Wu, R. T. Pike, C. P. Wong, N. P. Kim, M. H. Tanielian. Evaluation and characterization of reliable non-hermetic conformal coatings for microelectromechanical system (MEMS) device encapsulation. IEEE Trans. Adv. Packag., 2000, 23(4): 721–728
30   R. N. Wenzel. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem., 1936, 28(8): 988–994
31   A. B. D. Cassie, S. Baxter. Wettability of porous surfaces. Trans. Faraday Soc., 1944, 40: 546–551
Related
[1] Zhuo Cheng, Lang Qin, Jonathan A. Fan, Liang-Shih Fan. New Insight into the Development of Oxygen Carrier Materials for Chemical Looping Systems[J]. Engineering, 2018, 4(3): 343 -351 .
[2] Jennifer A. Clark, Erik E. Santiso. Carbon Sequestration through CO2 Foam-Enhanced Oil Recovery: A Green Chemistry Perspective[J]. Engineering, 2018, 4(3): 336 -342 .
[3] Andrea Di Maria, Karel Van Acker. Turning Industrial Residues into Resources: An Environmental Impact Assessment of Goethite Valorization[J]. Engineering, 2018, 4(3): 421 -429 .
[4] Lance A. Davis. Falcon Heavy[J]. Engineering, 2018, 4(3): 300 .
[5] Augusta Maria Paci. A Research and Innovation Policy for Sustainable S&T: A Comment on the Essay ‘‘Exploring the Logic and Landscape of the Knowledge System”[J]. Engineering, 2018, 4(3): 306 -308 .
[6] Ning Duan. When Will Speed of Progress in Green Science and Technology Exceed that of Resource Exploitation and Pollutant Generation?[J]. Engineering, 2018, 4(3): 299 .
[7] Jian-guo Li, Kai Zhan. Intelligent Mining Technology for an Underground Metal Mine Based on Unmanned Equipment[J]. Engineering, 2018, 4(3): 381 -391 .
[8] Veena Sahajwalla. Green Processes: Transforming Waste into Valuable Resources[J]. Engineering, 2018, 4(3): 309 -310 .
[9] Junye Wang, Hualin Wang, Yi Fan. Techno-Economic Challenges of Fuel Cell Commercialization[J]. Engineering, 2018, 4(3): 352 -360 .
[10] Raymond RedCorn, Samira Fatemi, Abigail S. Engelberth. Comparing End-Use Potential for Industrial Food-Waste Sources[J]. Engineering, 2018, 4(3): 371 -380 .
[11] Ning Duan, Linhua Jiang, Fuyuan Xu, Ge Zhang. A Non-Contact Original-State Online Real-Time Monitoring Method for Complex Liquids in Industrial Processes[J]. Engineering, 2018, 4(3): 392 -397 .
[12] Keith E. Gubbins, Kai Gu, Liangliang Huang, Yun Long, J. Matthew Mansell, Erik E. Santiso, Kaihang Shi, Małgorzata Ś liwińska-Bartkowiak, Deepti Srivastava. Surface-Driven High-Pressure Processing[J]. Engineering, 2018, 4(3): 311 -320 .
[13] Steff Van Loy, Koen Binnemans, Tom Van Gerven. Mechanochemical-Assisted Leaching of Lamp Phosphors: A Green Engineering Approach for Rare-Earth Recovery[J]. Engineering, 2018, 4(3): 398 -405 .
[14] Robert S. Weber, Johnathan E. Holladay. Modularized Production of Value-Added Products and Fuels from Distributed Waste Carbon-Rich Feedstocks[J]. Engineering, 2018, 4(3): 330 -335 .
[15] Hualin Wang, Pengbo Fu, Jianping Li, Yuan Huang, Ying Zhao, Lai Jiang, Xiangchen Fang, Tao Yang, Zhaohui Huang, Cheng Huang. Separation-and-Recovery Technology for Organic Waste Liquid with a High Concentration of Inorganic Particles[J]. Engineering, 2018, 4(3): 406 -415 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
京ICP备11030251号-2

 Engineering