Please wait a minute...
Submit  |   Chinese  | 
 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2015, Vol. 1 Issue (2) : 170 -178     https://doi.org/10.15302/J-ENG-2015035
Research |
Progress in Understanding Color Maintenance in Solid-State Lighting Systems
Maryam Yazdan Mehr1,2,Willem Dirk van Driel1,G. Q. (Kouchi) Zhang1,()
1. Delft University of Technology, Delft 2600 AA, the Netherlands
2. Material Innovation Institute (M2i), Delft 2628 XG, the Netherlands
Abstract
Abstract  

In this paper, progresses of color maintenance, also known as color shift, in solid-state lighting (SSL) systems are thoroughly reviewed. First, color shift is introduced and a few examples are given from different real-life industrial conditions. Different degradation mechanisms in different parts of the system are also explained. Different materials used as lenses/encapsulants in light-emitting diode (LED)-based products are introduced and their contributions to color shift are discussed. Efforts put into standardization, characterizing, and predicting lumen maintenance are also briefly reviewed in this paper.

Keywords light-emitting diode (LED)      color shift      lumen depreciation      lumen degradation     
Fund: 
Corresponding Authors: G. Q. (Kouchi) Zhang   
Just Accepted Date: 30 June 2015   Issue Date: 16 September 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Maryam Yazdan Mehr
Willem Dirk van Driel
G. Q. (Kouchi) Zhang
Cite this article:   
Maryam Yazdan Mehr,Willem Dirk van Driel,G. Q. (Kouchi) Zhang. Progress in Understanding Color Maintenance in Solid-State Lighting Systems[J]. Engineering, 2015, 1(2): 170 -178 .
URL:  
http://engineering.org.cn/EN/10.15302/J-ENG-2015035     OR     http://engineering.org.cn/EN/Y2015/V1/I2/170
References
1   G. R. Jones, A. G. Deakin, J. W. Spencer. Chromatic Monitoring of Complex Conditions. London: Taylor & Francis Group, 2008
2   D. L. MacAdam. Color Measurement: Theme and Variations. 2nd ed. New York: Springer-Verlag, 1985
3   K. L. Gordon, R. P. Hafen, J. E. Hathaway, J. J. McCullough. Lumen Maintenance Testing of the Philips 60-Watt Replacement Lamp L Prize Entry, PNNL-21594. Richland, WA: Pacific Northwest National Laboratory, 2013. http://www.lightingprize.org/pdfs/lprize_60w-lumen-maint-testing.pdf
4   S. Rosenfeld. Lighting art with LEDs at the Smithsonian American Art Museum (brief summary). In: 2011 DOE Solid-State Lighting R&D Workshop. San Diego, CA, 2014. http://energy.gov/eere/ssl/transformations-lighting-eighth-annual-solid-state-lighting-rd-workshop
5   S. Rosenfeld. Lighting art at the Smithsonian American Art Museum. In: 2013 DOE Solid-State Lighting R&D Workshop. Long Beach, CA, 2013. http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/rosenfeld_smithsonian_longbeach2013.pdf
6   M. Royer, R. Tuttle, S. Rosenfeld, N. Miller. Color Maintenance of LEDs in Laboratory and Field Applications, PNNL-22759. Richland, WA: Pacific Northwest National Laboratory, 2013. http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/2013_gateway_color-maintenance.pdf
7   US Department of Energy. Retail Lamps Study 3.2: Lumen and Chromaticity Maintenance of LED A Lamps Operated in Steady-State Conditions, PNNL-SA-23984. Richland, WA: Pacific Northwest National Laboratory, 2014. http://energy.gov/eere/ssl/downloads/retail-lamps-study-32-lumen-and-chromaticity-maintenance-led-lamps-operated
8   US Department of Energy. Solid State Lighting Technology Fact Sheet: LED Color Stability, PNNL-SA-101828. Washington, DC: US Department of Energy, 2014. http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/color-shift_fact-sheet.pdf
9   M. H. Chang, D. Das, P. V. Varde, M. Pecht. Light emitting diodes reliability review. Microelectron. Reliab., 2012, 52(5): 762−782
10   CIE. International commission on illumination. 2015-<month>03</month>-<day>18</day>. http://www.cie.co.at/index.php/Technical+Committees
11   N. Narendran, Y. Gu, J. P. Freyssinier-Nova, Y. Zhu. Extracting phosphor-scattered photons to improve white LED efficiency. Phys. Status Solidi A, 2005, 202(6): R60−R62
12   J. J. Licari. Coating Materials for Electronic Applications: Polymers, Processes, Reliability, Testing. New York: William Andrews, Inc., 2003
13   S. Tanabe, S. Fujita, S. Yoshihara, A. Sakamoto, S. Yamamoto. YAG glass-ceramic phosphor for white LED (II): Luminescence characteristics. In: I. T. Ferguson, J. C. Carrano, T. Taguchi, I. E. Ashdown, eds. SPIE Proceedings Vol. 5941: Fifth International Conference on Solid State Lighting. San Diego, CA, USA, 2005: 594112
14   Dow Corning Corporation. Silicone chemistry overview. Midland, MI: Dow Corning Corporation, 1997. https://www.dowcorning.com/content/publishedlit/01-4027-01.pdf
15   D. G. LeGrand, J. T. Bendler. Handbook of Polycarbonate Science and Technology. New York: Marcel Dekker, Inc., 2000
16   H. Krimm, H. Schnell, L. Bottenbruch. Thermoplastic aromatic polycarbonates and their manufacture: US, 3028365A. 1962-<month>04</month>-<day>03</day>
17   D. W. Fox. Polycarbonates of dihydroxyaryl ethers: US, 3148172A. 1964-<month>09</month>-<day>08</day>
18   W. D. van Driel, X. J. Fan. Solid State Lighting Reliability: Components to Systems. New York: Springer, 2012
19   M. Yazdan Mehr, W. D. van Driel, K. M. B. Jansen, P. Deeben, G. Q. Zhang. Lifetime assessment of bisphenol-A polycarbonate (BPA-PC) plastic lens, used in LED-based products. Microelectron. Reliab., 2014, 54(1): 138−142
20   M. Yazdan Mehr, W. D. van Driel, G. Q. Zhang. Accelerated life time testing and optical degradation of remote phosphor plates. Microelectron. Reliab., 2014, 54(8): 1544−1548
21   M. Yazdan Mehr, W. D. van Driel, S. Koh, G. Q. Zhang. Reliability and optical properties of LED lens plates under high temperature stress. Microelectron. Reliab., 2014, 54(11): 2440−2447
22   M. Yazdan Mehr, W. D. van Driel, H. Udono, G. Q. Zhang. Surface aspects of discolouration in Bisphenol A Polycarbonate (BPA-PC), used as lens in LED-based products. Opt. Mater., 2014, 37: 155−159
23   M. Yazdan Mehr, W. D. van Driel, K. M. B. Jansen, P. Deeben, M. Boutelje, G. Q. Zhang. Photodegradation of bisphenol A polycarbonate under blue light radiation and its effect on optical properties. Opt. Mater., 2013, 35(3): 504−508
24   Solais Lighting, Inc. LED color shift—Causes and management. Stamford: Solais Lighting, Inc., 2014. http://www.solais.com/download.php?f=/var/chroot/home/content/19/10197719/html/uploadedFiles/download/pdf/LEDColorshift.pdf
25   A. Rivaton. Recent advances in bisphenol-A polycarbonate photodegradation. Polym. Degrad. Stab., 1995, 49(1): 163−179
26   A. Rivaton, D. Sallet, J. Lemaire. The photochemistry of bisphenol-A polycarbonate reconsidered. Polym. Photochem., 1983, 3(6): 463−481
27   J. Lemaire, J. L. Gardette, A. Rivaton, A. Roger. Dual photo-chemistries in aliphatic polyamides, bisphenol A polycarbonate and aromatic polyurethanes—A short review. Polym. Degrad. Stab., 1986, 15(1): 1−13
28   G. Lu, Color shift investigations for LED secondary optical designs: Comparison between BPA-PC and PMMA. Opt. Mater., 2015, 45: 37−41
Related
[1] Zhuo Cheng, Lang Qin, Jonathan A. Fan, Liang-Shih Fan. New Insight into the Development of Oxygen Carrier Materials for Chemical Looping Systems[J]. Engineering, 2018, 4(3): 343 -351 .
[2] Jennifer A. Clark, Erik E. Santiso. Carbon Sequestration through CO2 Foam-Enhanced Oil Recovery: A Green Chemistry Perspective[J]. Engineering, 2018, 4(3): 336 -342 .
[3] Andrea Di Maria, Karel Van Acker. Turning Industrial Residues into Resources: An Environmental Impact Assessment of Goethite Valorization[J]. Engineering, 2018, 4(3): 421 -429 .
[4] Lance A. Davis. Falcon Heavy[J]. Engineering, 2018, 4(3): 300 .
[5] Augusta Maria Paci. A Research and Innovation Policy for Sustainable S&T: A Comment on the Essay ‘‘Exploring the Logic and Landscape of the Knowledge System”[J]. Engineering, 2018, 4(3): 306 -308 .
[6] Ning Duan. When Will Speed of Progress in Green Science and Technology Exceed that of Resource Exploitation and Pollutant Generation?[J]. Engineering, 2018, 4(3): 299 .
[7] Jian-guo Li, Kai Zhan. Intelligent Mining Technology for an Underground Metal Mine Based on Unmanned Equipment[J]. Engineering, 2018, 4(3): 381 -391 .
[8] Veena Sahajwalla. Green Processes: Transforming Waste into Valuable Resources[J]. Engineering, 2018, 4(3): 309 -310 .
[9] Junye Wang, Hualin Wang, Yi Fan. Techno-Economic Challenges of Fuel Cell Commercialization[J]. Engineering, 2018, 4(3): 352 -360 .
[10] Raymond RedCorn, Samira Fatemi, Abigail S. Engelberth. Comparing End-Use Potential for Industrial Food-Waste Sources[J]. Engineering, 2018, 4(3): 371 -380 .
[11] Ning Duan, Linhua Jiang, Fuyuan Xu, Ge Zhang. A Non-Contact Original-State Online Real-Time Monitoring Method for Complex Liquids in Industrial Processes[J]. Engineering, 2018, 4(3): 392 -397 .
[12] Keith E. Gubbins, Kai Gu, Liangliang Huang, Yun Long, J. Matthew Mansell, Erik E. Santiso, Kaihang Shi, Małgorzata Ś liwińska-Bartkowiak, Deepti Srivastava. Surface-Driven High-Pressure Processing[J]. Engineering, 2018, 4(3): 311 -320 .
[13] Steff Van Loy, Koen Binnemans, Tom Van Gerven. Mechanochemical-Assisted Leaching of Lamp Phosphors: A Green Engineering Approach for Rare-Earth Recovery[J]. Engineering, 2018, 4(3): 398 -405 .
[14] Robert S. Weber, Johnathan E. Holladay. Modularized Production of Value-Added Products and Fuels from Distributed Waste Carbon-Rich Feedstocks[J]. Engineering, 2018, 4(3): 330 -335 .
[15] Hualin Wang, Pengbo Fu, Jianping Li, Yuan Huang, Ying Zhao, Lai Jiang, Xiangchen Fang, Tao Yang, Zhaohui Huang, Cheng Huang. Separation-and-Recovery Technology for Organic Waste Liquid with a High Concentration of Inorganic Particles[J]. Engineering, 2018, 4(3): 406 -415 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
京ICP备11030251号-2

 Engineering