Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2015, Vol. 1 Issue (2) : 179 -184
Research |
Metamaterials: Reshape and Rethink
Ruopeng Liu1,2,(),Chunlin Ji1,2,Zhiya Zhao1,2,Tian Zhou1
1. Kuang-Chi Institute of Advanced Technology, Shenzhen 518000, China
2. State Key Laboratory of Metamaterial Electromagnetic Modulation Technology, Shenzhen 518000, China

Metamaterials are composite materials whose material properties (acoustic, electrical, magnetic, or optical, etc.) are determined by their constitutive structural materials, especially the unit cells. The development of metamaterials continues to redefine the boundaries of materials science. In the field of electromagnetic research and beyond, these materials offer excellent design flexibility with their customized properties and their tunability under external stimuli. In this paper, we first provide a literature review of metamaterials with a focus on the technology and its evolution. We then discuss steps in the industrialization process and share our own experience.

Keywords metamaterials      metasurface      smart structure      metadevices      industrialization     
Corresponding Authors: Ruopeng Liu   
Just Accepted Date: 30 June 2015   Issue Date: 16 September 2015
E-mail this article
E-mail Alert
Articles by authors
Ruopeng Liu
Chunlin Ji
Zhiya Zhao
Tian Zhou
Cite this article:   
Ruopeng Liu,Chunlin Ji,Zhiya Zhao, et al. Metamaterials: Reshape and Rethink[J]. Engineering, 2015, 1(2): 179 -184 .
URL:     OR
1   J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 2000, 85(18): 3966−3969
2   D. R. Smith, J. B. Pendry, M. C. K. Wiltshire. Metamaterials and negative refractive index. Science, 2004, 305(5685): 788−792
3   D. Schurig, Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314(5801): 977−980
4   A. Alù, N. Engheta. Plasmonic and metamaterial cloaking: Physical mechanisms and potentials. J. Opt. A: Pure Appl. Opt., 2008, 10(9): 093002
5   A. Alù, N. Engheta. Plasmonic materials in transparency and cloaking problems: Mechanism, robustness, and physical insights. Opt. Express, 2007, 15(6): 3318−3332
6   R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, D. R. Smith. Broadband ground-plane cloak. Science, 2009, 323(5912): 366−369
7   R. M. Walser. Electromagnetic metamaterials. In: A. Lakhtakia, W. S. Weiglhofer, I. J. Hodgkinson, eds. SPIE Proceedings Vol. 4467, Complex Mediums II: Beyond Linear Isotropic Dielectrics. San Diego: SPIE Proceedings, 2001: 1−15
8   C. G. Parazzoli, R. B. Greegor, K. Li, B. E. Koltenbah, M. Tanielian. Experimental verification and simulation of negative index of refraction using Snell’s law. Phys. Rev. Lett., 2003, 90(10): 107401
9   M. Li, N. Behdad. Frequency selective surfaces for pulsed high-power microwave applications. IEEE T. Antenn. Propag., 2013, 61(2): 677−687
10   C. H. Liu, N. Behdad. Investigating the impact of microwave breakdown on the responses of high-power microwave metamaterials. IEEE T. Plasma Sci., 2013, 41(10): 2992−3000
11   C. H. Liu, J. D. Neher, J. H. Booske, N. Behdad. Investigating the physics of simultaneous breakdown events in high-power-microwave (HPM) metamaterials with multiresonant unit cells and discrete nonlinear responses. IEEE T. Plasma Sci., 2014, 42(5): 1255−1264
12   S. Sajuyigbe, M. Ross, P. Geren, S. A. Cummer, M. H. Tanielian, D. R. Smith. Wide angle impedance matching metamaterials for waveguide-fed phased-array antennas. IET Microw. Antenna. P., 2010, 4(8): 1063−1072
13   U. Leonhardt. Optical conformal mapping. Science, 2006, 312(5781): 1777−1780
14   J. B. Pendry, D. Schurig, D. R. Smith. Controlling electromagnetic fields. Science, 2006, 312(5781): 1780−1782
15   B. Edwards, A. Alù, M. G. Silveirinha, N. Engheta. Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. Phys. Rev. Lett., 2009, 103(15): 153901
16   N. Fang, H. Lee, C. Sun, X. Zhang. Sub-diffraction-limited optical imaging with a silver superlens. Science, 2005, 308(5721): 534−537
17   B. A. Munk. Frequency Selective Surfaces: Theory and Design. New York: John Wiley & Sons, Inc., 2005
18   R. Mittra, C. H. Chan, T. Cwik. Techniques for analyzing frequency selective surfaces—A review. Proc. IEEE, 1988, 76(12): 1593−1615
19   R. W. Ziolkowski, A. D. Kipple. Application of double negative materials to increase the power radiated by electrically small antennas. IEEE T. Antenn. Propag., 2003, 51(10): 2626−2640
20   S. Clavijo, R. E. Diaz, W. E. McKinzie. Design methodology for Sievenpiper high-impedance surfaces: An artificial magnetic conductor for positive gain electrically small antennas. IEEE T. Antenn. Propag., 2003, 51(10): 2678−2690
21   F. Yang, Y. Rahmat-Samii. Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications. IEEE T. Antenn. Propag., 2003, 51(10): 2691−2703
22   D. F. Sievenpiper, J. H. Schaffner, H. J. Song, R. Y. Loo, G. Tangonan. Two-dimensional beam steering using an electrically tunable impedance surface. IEEE T. Antenn. Propag., 2003, 51(10): 2713−2722
23   F. Yang, Y. Rahmat-Samii. Electromagnetic Band Gap Structures in Antenna Engineering. Cambridge, UK: Cambridge University Press, 2008
24   R. W. Ziolkowski, P. Jin, C. C. Lin. Metamaterial-inspired engineering of antennas. Proc. IEEE, 2011, 99(10): 1720−1731
25   C. Caloz, T. Itoh. Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. Portland, OR: Wiley-IEEE Press, 2005
26   A. Grbic, G. V. Eleftheriades. Experimental verification of backward-wave radiation from a negative refractive index metamaterial. J. Appl. Phys., 2002, 92(10): 5930−5935
27   L. Liu, C. Caloz, T. Itoh. Dominant mode leaky-wave antenna with backfire-to-endfire scanning capability. Electron. Lett., 2002, 38(23): 1414−1416
28   R. W. Ziolkowski. Metamaterials: The early years in the USA. EPJ Appl. Metamat., 2014, 1: 5
29   C. M. Soukoulis, S. Linden, M. Wegener. Physics. Negative refractive index at optical wavelengths. Science, 2007, 315(5808): 47−49
30   C. M. Soukoulis, M. Wegener. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics, 2011, 5(9): 523−530
31   X. Zhang, Z. Liu. Superlenses to overcome the diffraction limit. Nat. Mater., 2008, 7(6): 435−441
32   J. Rho, Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. Nat. Commun., 2010, 1(9): 143
33   G. Dolling, M. Wegener, C. M. Soukoulis, S. Linden. Negative-index metamaterial at 780 nm wavelength. Opt. Lett., 2007, 32(1): 53−55
34   T. Hand, S. Cummer. Characterization of tunable metamaterial elements using MEMS switches. IEEE Antenn. Wirel. Pr., 2007, 6(11): 401−404
35   H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, R. D. Averitt. Reconfigurable terahertz metamaterials. Phys. Rev. Lett., 2009, 103(14): 147401
36   B. Ozbey, O. Aktas. Continuously tunable terahertz metamaterial employing magnetically actuated cantilevers. Opt. Express, 2011, 19(7): 5741−5752
37   T. S. Kasirga, Y. N. Ertas, M. Bayindir. Microfluidics for reconfigurable electromagnetic metamaterials. Appl. Phys. Lett., 2009, 95(21): 214102
38   H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt. Active terahertz metamaterial devices. Nature, 2006, 444(7119): 597−600
39   R. C. McPhedran, I. V. Shadrivov, B. T. Kuhlmey, Y. S. Kivshar. Metamaterials and metaoptics. NPG Asia Mater., 2011, 3: 100−108
40   S. Guenneau, R. C. McPhedran, S. Enoch, A. B. Movchan, M. Farhat, N. A. P. Nicorovici. The colours of cloaks. J. Opt., 2011, 13(2): 024014
41   M. Kadic, T. Bückmann, R. Schittny, M. Wegener. Metamaterials beyond electromagnetism. Rep. Prog. Phys., 2013, 76(12): 126501
42   K. Sato, T. Nomura, S. Matsuzawa, H. Iizuka. Metamaterial techniques for automotive applications. In: PIERS proceedings. Hangzhou, China, 2008: 1122−1125
43   F. Fitzek, R. H. Rasshofer, E. M. Biebl. Metamaterial matching of high-permittivity coatings for 79 GHz radar sensors. In: Proceedings of 2010 European Microwave Conference (EuMC). London: Horizon House Publications Ltd., 2010: 1401−1404
44   K. M. Palmer. Metamaterials make for a broadband breakthrough. IEEE Spectrum, 2012, 49(1): 13−14
45   N. Kundtz. Next generation communications for next generation satellites. Microwave J., 2014, 57(8): 14
46   K. M. Alam, A. P. Singh, R. Starko-Bowes, S. C. Bodepudi, S. Pramanik. Template-assisted synthesis of π-conjugated molecular organic nanowires in the sub-100 nm regime and device implications. Adv. Funct. Mater., 2012, 22(15): 3298−3306
47   R. Starko-Bowes, S. Pramanik. Ultrahigh density array of vertically aligned small-molecular organic nanowires on arbitrary substrates. J. Vis. Exp., 2013 (76): e50706
48   D. J. Shelton, Strong coupling between nanoscale metamaterials and phonons. Nano Lett., 2011, 11(5): 2104−2108
49   D. Shelton. Tunable infrared metamaterials (Doctoral dissertation). Orlando, FL: University of Central Florida, 2010
50   J. B. Pendry, D. R. Smith. Reversing light with negative refraction. Phys. Today, 2004, 57(6): 37−43
51   A. Bhattacharya. Modeling and simulation of metamaterial-based devices for industrial applications. 2013-<month>09</month>-<day>26</day>.
[1] Holger Krueger. Standardization for Additive Manufacturing in Aerospace[J]. Engineering, 2017, 3(5): 585 .
[2] Joe A. Sestak Jr.. High School Students from 157 Countries Convene to Address One of the 14 Grand Challenges for Engineering: Access to Clean Water[J]. Engineering, 2017, 3(5): 583 -584 .
[3] Lance A. Davis. Climate Agreement—Revisited[J]. Engineering, 2017, 3(5): 578 -579 .
[4] Ben A. Wender, M. Granger Morgan, K. John Holmes. Enhancing the Resilience of Electricity Systems[J]. Engineering, 2017, 3(5): 580 -582 .
[5] Jin-Xun Liu, Peng Wang, Wayne Xu, Emiel J. M. Hensen. Particle Size and Crystal Phase Effects in Fischer-Tropsch Catalysts[J]. Engineering, 2017, 3(4): 467 -476 .
[6] Luis Ribeiro e Sousa, Tiago Miranda, Rita Leal e Sousa, Joaquim Tinoco. The Use of Data Mining Techniques in Rockburst Risk Assessment[J]. Engineering, 2017, 3(4): 552 -558 .
[7] Maggie Bartolomeo. Third Global Grand Challenges Summit for Engineering[J]. Engineering, 2017, 3(4): 434 -435 .
[8] Michael Powalla, Stefan Paetel, Dimitrios Hariskos, Roland Wuerz, Friedrich Kessler, Peter Lechner, Wiltraud Wischmann, Theresa Magorian Friedlmeier. Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2[J]. Engineering, 2017, 3(4): 445 -451 .
[9] Raffaella Ocone. Reconciling “Micro” and “Macro” through Meso-Science[J]. Engineering, 2017, 3(3): 281 -282 .
[10] Baoning Zong, Bin Sun, Shibiao Cheng, Xuhong Mu, Keyong Yang, Junqi Zhao, Xiaoxin Zhang, Wei Wu. Green Production Technology of the Monomer of Nylon-6: Caprolactam[J]. Engineering, 2017, 3(3): 379 -384 .
[11] Pengcheng Xu, Yong Jin, Yi Cheng. Thermodynamic Analysis of the Gasification of Municipal Solid Waste[J]. Engineering, 2017, 3(3): 416 -422 .
[12] Lei Xu, Jinhui Peng, Hailong Bai, C. Srinivasakannan, Libo Zhang, Qingtian Wu, Zhaohui Han, Shenghui Guo, Shaohua Ju, Li Yang. Application of Microwave Melting for the Recovery of Tin Powder[J]. Engineering, 2017, 3(3): 423 -427 .
[13] Ee Teng Kho, Salina Jantarang, Zhaoke Zheng, Jason Scott, Rose Amal. Harnessing the Beneficial Attributes of Ceria and Titania in a Mixed-Oxide Support for Nickel-Catalyzed Photothermal CO2 Methanation[J]. Engineering, 2017, 3(3): 393 -401 .
[14] Ke Dang, Tuo Wang, Chengcheng Li, Jijie Zhang, Shanshan Liu, Jinlong Gong. Improved Oxygen Evolution Kinetics and Surface States Passivation of Ni-Bi Co-Catalyst for a Hematite Photoanode[J]. Engineering, 2017, 3(3): 285 -289 .
[15] Mu Xiao, Songcan Wang, Supphasin Thaweesak, Bin Luo, Lianzhou Wang. Tantalum (Oxy)Nitride: Narrow Bandgap Photocatalysts for Solar Hydrogen Generation[J]. Engineering, 2017, 3(3): 365 -378 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.