Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2015, Vol. 1 Issue (2) : 185 -191
Research |
Bulk Glassy Alloys: Historical Development and Current Research
Akihisa Inoue1,2,()
1. Tohoku University, Sendai 980-8577, Japan
2. International Institute of Green Materials, Josai International University, Togane 283-8555, Japan

This paper reviews the development of current research in bulk glassy alloys by focusing on the trigger point for the synthesis of the first bulk glassy alloys by the conventional mold casting method. This review covers the background, discovery, characteristics, and applications of bulk glassy alloys, as well as recent topics regarding them. Applications of bulk glassy alloys have been expanding, particularly for Fe-based bulk glassy alloys, due to their unique properties, high glass-forming ability, and low cost. In the near future, the engineering importance of bulk glassy alloys is expected to increase steadily, and continuous interest in these novel metallic materials for basic science research is anticipated.

Keywords bulk glassy alloys      mold casting      metallic materials      structural relaxation     
Corresponding Authors: Akihisa Inoue   
Just Accepted Date: 30 June 2015   Issue Date: 16 September 2015
E-mail this article
E-mail Alert
Articles by authors
Akihisa Inoue
Cite this article:   
Akihisa Inoue. Bulk Glassy Alloys: Historical Development and Current Research[J]. Engineering, 2015, 1(2): 185 -191 .
URL:     OR
1   A. Inoue, T. Masumoto, M. Hagiwara, H. S. Chen. The structural relaxation behavior of Pd48Ni32P20, Fe75Si10B15 and Co72.5Si12.5B15 amorphous alloy wire and ribbon. Scr. Metall., 1983, 17(10): 1205−1208
2   A. Inoue, T. Masumoto, H. S. Chen. Enthalpy relaxation behaviour of (Fe, Co, Ni)75Si10B15 amorphous alloys upon low temperature annealing. J. Mater. Sci., 1984, 19(12): 3953−3966
3   H. S. Chen, A. Inoue, T. Masumoto. Two-stage enthalpy relaxation behaviour of (Fe0.5Ni0.5)83P17 and (Fe0.5Ni0.5)83B17 amorphous alloys upon annealing. J. Mater. Sci., 1985, 20(7): 2417−2438
4   H. S. Chen, A. Inoue. Sub-Tg enthalpy relaxation in PdNiSi alloy glasses. J. Non-Cryst. Solids, 1984, 61−62(Part 2): 805−810
5   A. Inoue, H. S. Chen, J. T. Krause, T. Masumoto. The effects of quench rate and cold drawing on the structural relaxation and young’s modulus of an amorphous Pd77.5Cu6Si16.5 wire. J. Non-Cryst. Solids, 1984, 61−62(Part 2): 949−954
6   H. S. Chen. Glassy metals. Rep. Prog. Phys., 1980, 43(4): 353−432
7   O. Yoshinari, M. Koiwa, A. Inoue, T. Masumoto. Hydrogen related internal friction peaks in amorphous and crystallized Pd-Cu-Si alloys. Acta Metall., 1983, 31(12): 2063−2072
8   H. S. Chen, J. T. Krause, A. Inoue, T. Masumoto. The effect of quench rate on the young’s modulus of Fe-, Co-, Ni- and Pd-based amorphous alloys. Scr. Metall., 1983, 17(12): 1413−1414
9   A. Inoue, Y. Masumoto, N. Yano, A. Kawashima, K. Hashimoto, T. Masumoto. Production of Ni-Pd-Si and Ni-Pd-P amorphous wires and their mechanical and corrosion properties. J. Mater. Sci., 1985, 20(1): 97−104
10   A. Inoue, H. S. Chen, J. T. Krause, T. Masumoto, M. Hagiwara. Young’s modulus of Fe-, Co-, Pd- and Pt-based amorphous wires produced by the in-rotating-water spinning method. J. Mater. Sci., 1983, 18(9): 2743−2751
11   A. Inoue, T. Masumoto, H. S. Chen. Enthalpy relaxation behaviour of metal-metal (Zr-Cu) amorphous alloys upon annealing. J. Mater. Sci., 1985, 20(11): 4057−4068
12   A. Inoue, K. Ohtera, A. P. Tsai, T. Masumoto. New amorphous alloys with good ductility in Al-Y-M and Al-La-M (M= Fe, Co, Ni or Cu) systems. Jpn. J. Appl. Phys., 1988, 27(Part 2, No. 3): L280−L282
13   A. Inoue, T. Zhang, T. Masumoto. Al-La-Ni amorphous alloys with a wide supercooled liquid region. Mater. T. JIM, 1989, 30(12): 965−972
14   A. P. Tsai, A. Inoue, T. Masumoto. Ductile Al-Ni-Zr amorphous alloys with high mechanical strength. J. Mater. Sci. Lett., 1988, 7(8): 805−807
15   Y. He, S. J. Poon, G. J. Shiflet. Synthesis and properties of metallic glasses that contain aluminum. Science, 1988, 241(4873): 1640−1642
16   Z. C. Zhong, X. Y. Jiang, A. L. Greer. Microstructure and hardening of Al-based nanophase composites. Mater. Sci. Eng. A, 1997, 226−228: 531−535
17   Y. He, G. J. Shiflet, S. J. Poon. Ball milling-induced nanocrystal formation in aluminum-based metallic glasses. Acta Metall. Mater., 1995, 43(1): 83−91
18   J. C. Foley, D. R. Allen, J. H. Perepezko. Analysis of nanocrystal development in Al-Y-Fe and Al-Sm glasses. Scr. Mater., 1996, 35(5): 655−660
19   W. H. Jiang, F. E. Pinkerton, M. Atzmon. Effect of strain rate on the formation of nanocrystallites in an Al-based amorphous alloy during nanoindentation. J. Appl. Phys., 2003, 93(11): 9287−9290
20   A. Inoue. Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems. Prog. Mater. Sci., 1998, 43(5): 365−520
21   A. Inoue. High strength bulk amorphous alloys with low critical cooling rates (overview). Mater. T. JIM, 1995, 36(7): 866−875
22   A. Inoue. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater., 2000, 48(1): 279−306
23   A. Inoue, T. Zhang, T. Masumoto. Al-La-Ni amorphous alloys with a wide supercooled liquid region. Mater. T. JIM, 1989, 30(12): 965−972
24   A. Inoue, T. Zhang, T. Masumoto. Zr-Al-Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region. Mater. T. JIM, 1990, 31(3): 177−183
25   A. Inoue, T. Zhang, T. Masumoto. New amorphous alloys with significant supercooled liquid region and large reduced glass transition temperature. Mater. Sci. Eng. A, 1991, 134: 1125−1128
26   A. Inoue, T. Zhang, T. Masumoto. Production of amorphous cylinder and sheet of La55Al25Ni20 alloy by a metallic mold casting method. Mater. T. JIM, 1990, 31(5): 425−428
27   A. Inoue, A. Kato, T. Zhang, S. G. Kim, T. Masumoto. Mg-Cu-Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method. Mater. T. JIM, 1991, 32(7): 609−616
28   A. Inoue, T. Nakamura, N. Nishiyama, T. Masumoto. Mg-Cu-Y bulk amorphous alloys with high tensile strength produced by a high-pressure die casting method. Mater. T. JIM, 1992, 33(10): 937−945
29   T. Zhang, A. Inoue, T. Masumoto. Amorphous Zr-Al-TM (TM= Co, Ni, Cu) alloys with significant supercooled liquid region of over 100 K. Mater. T. JIM, 1991, 32(11): 1005−1010
30   C. Suryanarayana, A. Inoue. Bulk Metallic Glasses. Boca Raton, FL: CRC Press, 2010
31   A. Peker, W. L. Johnson. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett., 1993, 63(17): 2342−2344
32   A. Inoue, A. Takeuchi. Recent development and application products of bulk glassy alloys. Acta Mater., 2011, 59(6): 2243−2267
33   A. Inoue, T. Zhang, N. Nishiyama, K. Ohba, T. Masumoto. Preparation of 16 mm diameter rod of amorphous Zr65Al7.5Ni10Cu17.5 alloy. Mater. T. JIM, 1993, 34(12): 1234−1237
34   A. Inoue, Y. Yokoyama, Y. Shinohara, T. Masumoto. Preparation of bulky Zr-based amorphous alloys by a zone melting method. Mater. T. JIM, 1994, 35(12): 923−926
35   A. Inoue, T. Zhang. Fabrication of bulky Zr-based glassy alloys by suction casting into copper mold. Mater. T. JIM, 1995, 36(9): 1184−1187
36   A. Inoue, J. S. Gook. Multicomponent Fe-based glassy alloys with wide supercooled liquid region before crystallization. Mater. T. JIM, 1995, 36(10): 1282−1285
37   A. Inoue, Y. Shinohara, J. S. Gook. Thermal and magnetic properties of bulk Fe-based glassy alloys prepared by copper mold casting. Mater. T. JIM, 1995, 36(12): 1427−1433
38   Z. P. Lu, C. T. Liu. Role of minor alloying additions in formation of bulk metallic glasses: A review. J. Mater. Sci., 2004, 39(12): 3965−3974
39   W. H. Wang. Roles of minor additions in formation and properties of bulk metallic glasses. Prog. Mater. Sci., 2007, 52(4): 540−596
40   C. T. Liu, Z. P. Lu. Effect of minor alloying additions on glass formation in bulk metallic glasses. Intermetallics, 2005, 13(3−4): 415−418
41   A. Inoue, W. Zhang, T. Zhang, K. Kurosaka. High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems. Acta Mater., 2001, 49(14): 2645−2652
42   A. Inoue, W. Zhang, T. Zhang, K. Kurosaka. Cu-based bulk glassy alloys with good mechanical properties in Cu-Zr-Hf-Ti system. Mater. Trans., 2001, 42(8): 1805−1812
43   Q. Zhang, W. Zhang, A. Inoue. New Cu-Zr-based bulk metallic glasses with large diameters of up to 1.5 cm. Scr. Mater., 2006, 55(8): 711−713
44   S. J. Pang, T. Zhang, K. Asami, A. Inoue. Synthesis of Fe-Cr-Mo-C-B-P bulk metallic glasses with high corrosion resistance. Acta Mater., 2002, 50(3): 489−497
45   S. Pang, T. Zhang, K. Asami, A. Inoue. Formation of bulk glassy Fe75–x–yCrxMoyC15B10 alloys and their corrosion behavior. J. Mater. Res., 2002, 17(3): 701−704
46   S. L. Zhu, X. M. Wang, A. Inoue. Glass-forming ability and mechanical properties of Ti-based bulk glassy alloys with large diameters of up to 1 cm. Intermetallics, 2008, 16(8): 1031−1035
47   S. L. Zhu, X. M. Wang, F. X. Qin, A. Inoue. A new Ti-based bulk glassy alloy with potential for biomedical application. Mater. Sci. Eng. A, 2007, 459(1−2): 233−237
48   V. Ponnambalam, S. J. Poon, G. J. Shiflet. Fe-based bulk metallic glasses with diameter thickness larger than one centimeter. J. Mater. Res., 2004, 19(5): 1320−1323
49   Z. P. Lu, C. T. Liu, J. R. Thompson, W. D. Porter. Structural amorphous steels. Phys. Rev. Lett., 2004, 92(24): 245503
50   J. Shen, Q. Chen, J. Sun, H. Fan, G. Wang. Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy. Appl. Phys. Lett., 2005, 86(15): 151907
51   K. Amiya, A. Inoue. Fe-(Cr, Mo)-(C, B)-Tm bulk metallic glasses with high strength and high glass-forming ability. Mater. Trans., 2006, 47(6): 1615−1618
52   C. Chang, B. Shen, A. Inoue. Co-Fe-B-Si-Nb bulk glassy alloys with superhigh strength and extremely low magnetostriction. Appl. Phys. Lett., 2006, 88(1): 011901
53   Y. Zeng. N. Nishiyama, A. Inoue, Development of Ni-Pd-P-B bulk metallic glasses with high glass-forming ability. Mater. Trans., 2009, 50(6): 1243−1246
54   C. Chang, C. Qin, A. Makino, A. Inoue. Enhancement of glass-forming ability of FeSiBP bulk glassy alloys with good soft-magnetic properties and high corrosion resistance. J. Alloys Compd., 2012, 533: 67−70
55   H. Ma, E. Ma, J. Xu. A new Mg65Cu7.5Ni7.5Zn5Ag5Y10 bulk metallic glass with strong glass-forming ability. J. Mater. Res., 2003, 18(10): 2288−2291
56   A. Inoue, T. Nakamura, T. Sugita, T. Zhang, T. Masumoto. Bulky La-Al-TM (TM= transition metal) amorphous alloys with high tensile strength produced by a high-pressure die casting method. Mater. T. JIM, 1993, 34(4): 351−358
57   A. Inoue, N. Nishiyama, H. Kimura. Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter. Mater. T. JIM, 1997, 38(2): 179−183
58   N. Nishiyama, K. Takenaka, H. Miura, N. Saidoh, Y. Zeng, A. Inoue. The world’s biggest glassy alloy ever made. Intermetallics, 2012, 30: 19−24
59   H. B. Lou, 73 mm-diameter bulk metallic glass rod by copper mould casting. Appl. Phys. Lett., 2011, 99(5): 051910
60   A. Inoue, B. Shen, H. Koshiba, H. Kato, A. R. Yavari. Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties. Nature Mater., 2003, 2(10): 661−663
61   A. Inoue, B. L. Shen, H. Koshiba, H. Kato, A. R. Yavari. Ultra-high strength above 5000 MPa and soft magnetic properties of Co-Fe-Ta-B bulk glassy alloys. Acta Mater., 2004, 52(6): 1631−1637
62   Q. Man, A. Inoue, Y. Dong, J. Qiang, C. Zhao, B. Shen. A new CoFe-based bulk metallic glasses with high thermoplastic forming ability. Scripta Mater., 2013, 69(7): 553−556
63   J. Li, H. Men, B. Shen. Soft-ferromagnetic bulk glassy alloys with large magnetostriction and high glass-forming ability. AIP Adv., 2011, 1(4): 042110
64   C. Fan, A. Inoue. Ductility of bulk nanocrystalline composites and metallic glasses at room temperature. Appl. Phys. Lett., 2000, 77(1): 46−48
65   A. Inoue. Preparation and novel properties of nanocrystalline and nanoquasicrystalline alloys. Nanostruct. Mater., 1995, 6(1−4): 53−64
66   G. Y. Sun, G. Chen, C. T. Liu, G. L. Chen. Innovative processing and property improvement of metallic glass based composites. Scr. Mater., 2006, 55(4): 375−378
67   J. Eckert, J. Das, S. Pauly, C. Duhamel. Processing routes, microstructure and mechanical properties of metallic glasses and their composites. Adv. Eng. Mater., 2007, 9(6): 443−453
68   H. Kato, T. Hirano, A. Matsuo, Y. Kawamura, A. Inoue. High strength and good ductility of Zr55Al10Ni5Cu30 bulk glass containing ZrC particles. Scr. Mater., 2000, 43(6): 503−507
69   A. Inoue, F. L. Kong, S. L. Zhu, E. Shalaan, F. M. Al-Marzouki. Production methods and properties of engineering glassy alloys and composites. Intermetallics, 2015, 58: 20−30
70   A. Inoue, N. Matsumoto, T. Masumoto. Al-Ni-Y-Co amorphous alloys with high mechanical strengths, wide supercooled liquid region and large glass-forming capacity. Mater. T. JIM, 1990, 31(6): 493−500
71   L. Zhuo, B. Yang, H. Wang, T. Zhang. Spray formed Al-based amorphous matrix nanocomposite plate. J. Alloys Compd., 2011, 509(18): L169−L173
72   H. Kakiuchi, A. Inoue, M. Onuki, Y. Takano, T. Yamaguchi. Application of Zr-based bulk glassy alloys to golf clubs. Mater. Trans., 2001, 42(4): 678−681
73   W. L. Johnson. Bulk glass-forming metallic alloys: Science and technology. MRS Bull., 1999, 24(10): 42−56
74   W. L. Johnson. Bulk amorphous metal–An emerging engineering material. JOM, 2002, 54(3): 40−43
75   H. Koshiba, Y. Naito, T. Mizushima, A. Inoue. Development of the Fe-based glassy alloy “LiqualloyTM” and its application to powder core. Materia Japan, 2008, 47(1): 39−41
76   H. Matsumoto, A. Urata, Y. Yamada, A. Inoue. FePBNbCr soft-magnetic glassy alloys with low loss characteristics for inductor cores. J. Alloys Compd., 2010, 504(Supplement 1): S139−S141
77   A. Kobayashi, S. Yano, H. Kimura, A. Inoue. Mechanical property of Fe-base metallic glass coating formed by gas tunnel type plasma spraying. Surf. Coat. Tech., 2008, 202(12): 2513−2518
78   H. G. Kim, Effect of particle size distribution of the feedstock powder on the microstructure of bulk metallic glass sprayed coating by HVOF on aluminum alloy substrate. Mater. Sci. Forum, 2008, 580−582: 467−470
79   A. Inoue, N. Nishiyama. New bulk metallic glasses for applications as magnetic-sensing, chemical, and structural materials. MRS Bull., 2007, 32(8): 651−658
80   B. Shen, C. Chang, T. Kubota, A. Inoue. Superhigh strength and excellent soft-magnetic properties of [(Co1–xFex)0.75B0.2Si0.05]96Nb4 bulk glassy alloys. J. Appl. Phys., 2006, 100(1): 013515
81   A. Inoue, B. L. Shen, C. T. Chang. Super-high strength of over 4000 MPa for Fe-based bulk glassy alloys in [(Fe1–xCox)0.75B0.2Si0.05]96Nb4 system. Acta Mater., 2004, 52(14): 4093−4099
82   W. Yang, Mechanical properties and structural features of novel Fe-based bulk metallic glasses with unprecedented plasticity. Sci. Rep., 2014, 4: 6233
83   L. Ma, L. Wang, T. Zhang, A. Inoue. Bulk glass formation of Ti-Zr-Hf-Cu-M (M= Fe, Co, Ni) alloys. Mater. Trans., 2002, 43(2): 277−280
84   B. S. Murty, J. W. Yeh, S. Ranganathan. High-Entropy Alloys. London: Butterworth-Heinemann, 2014
85   A. Takeuchi, Pd20Pt20Cu20Ni20P20 high-entropy alloy as a bulk metallic glass in the centimeter. Intermetallics, 2011, 19(10): 1546−1554
86   A. Inoue, Effect of high-order multicomponent on formation and properties of Zr-based bulk glassy alloys. J. Alloys Compd., 2015, 638: 197−203
[1] Zhuo Cheng, Lang Qin, Jonathan A. Fan, Liang-Shih Fan. New Insight into the Development of Oxygen Carrier Materials for Chemical Looping Systems[J]. Engineering, 2018, 4(3): 343 -351 .
[2] Jennifer A. Clark, Erik E. Santiso. Carbon Sequestration through CO2 Foam-Enhanced Oil Recovery: A Green Chemistry Perspective[J]. Engineering, 2018, 4(3): 336 -342 .
[3] Andrea Di Maria, Karel Van Acker. Turning Industrial Residues into Resources: An Environmental Impact Assessment of Goethite Valorization[J]. Engineering, 2018, 4(3): 421 -429 .
[4] Lance A. Davis. Falcon Heavy[J]. Engineering, 2018, 4(3): 300 .
[5] Augusta Maria Paci. A Research and Innovation Policy for Sustainable S&T: A Comment on the Essay ‘‘Exploring the Logic and Landscape of the Knowledge System”[J]. Engineering, 2018, 4(3): 306 -308 .
[6] Ning Duan. When Will Speed of Progress in Green Science and Technology Exceed that of Resource Exploitation and Pollutant Generation?[J]. Engineering, 2018, 4(3): 299 .
[7] Jian-guo Li, Kai Zhan. Intelligent Mining Technology for an Underground Metal Mine Based on Unmanned Equipment[J]. Engineering, 2018, 4(3): 381 -391 .
[8] Veena Sahajwalla. Green Processes: Transforming Waste into Valuable Resources[J]. Engineering, 2018, 4(3): 309 -310 .
[9] Junye Wang, Hualin Wang, Yi Fan. Techno-Economic Challenges of Fuel Cell Commercialization[J]. Engineering, 2018, 4(3): 352 -360 .
[10] Raymond RedCorn, Samira Fatemi, Abigail S. Engelberth. Comparing End-Use Potential for Industrial Food-Waste Sources[J]. Engineering, 2018, 4(3): 371 -380 .
[11] Ning Duan, Linhua Jiang, Fuyuan Xu, Ge Zhang. A Non-Contact Original-State Online Real-Time Monitoring Method for Complex Liquids in Industrial Processes[J]. Engineering, 2018, 4(3): 392 -397 .
[12] Keith E. Gubbins, Kai Gu, Liangliang Huang, Yun Long, J. Matthew Mansell, Erik E. Santiso, Kaihang Shi, Małgorzata Ś liwińska-Bartkowiak, Deepti Srivastava. Surface-Driven High-Pressure Processing[J]. Engineering, 2018, 4(3): 311 -320 .
[13] Steff Van Loy, Koen Binnemans, Tom Van Gerven. Mechanochemical-Assisted Leaching of Lamp Phosphors: A Green Engineering Approach for Rare-Earth Recovery[J]. Engineering, 2018, 4(3): 398 -405 .
[14] Robert S. Weber, Johnathan E. Holladay. Modularized Production of Value-Added Products and Fuels from Distributed Waste Carbon-Rich Feedstocks[J]. Engineering, 2018, 4(3): 330 -335 .
[15] Hualin Wang, Pengbo Fu, Jianping Li, Yuan Huang, Ying Zhao, Lai Jiang, Xiangchen Fang, Tao Yang, Zhaohui Huang, Cheng Huang. Separation-and-Recovery Technology for Organic Waste Liquid with a High Concentration of Inorganic Particles[J]. Engineering, 2018, 4(3): 406 -415 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.