Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2015, Vol. 1 Issue (2) : 243 -246
Research |
First-Principles Study of Lithium and Sodium Atoms Intercalation in Fluorinated Graphite
Fengya Rao1,Zhiqiang Wang1,Bo Xu1,Liquan Chen2,Chuying Ouyang1,()
1. Department of Physics, Jiangxi Normal University, Nanchang 330022, China
2. Laboratory for Solid State Ionics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

The structure evolution of fluorinated graphite (CFx) upon the Li/Na intercalation has been studied by first-principles calculations. The Li/Na adsorption on single CF layer and intercalated into bulk CF have been calculated. The better cycling performance of Na intercalation into the CF cathode, comparing to that of Li intercalation, is attributed to the different strength and characteristics of the Li-F and Na-F interactions. The interactions between Li and F are stronger and more localized than those between Na and F. The strong and localized Coulomb attraction between Li and F atoms breaks the C−F bonds and pulls the F atoms away, and graphene sheets are formed upon Li intercalation.

Keywords first-principles      Li/Na rechargeable batteries      fluorinated graphite     
Corresponding Authors: Chuying Ouyang   
Just Accepted Date: 30 June 2015   Issue Date: 16 September 2015
E-mail this article
E-mail Alert
Articles by authors
Fengya Rao
Zhiqiang Wang
Bo Xu
Liquan Chen
Chuying Ouyang
Cite this article:   
Fengya Rao,Zhiqiang Wang,Bo Xu, et al. First-Principles Study of Lithium and Sodium Atoms Intercalation in Fluorinated Graphite[J]. Engineering, 2015, 1(2): 243 -246 .
URL:     OR
1   N. Watanabe, M. Fukuda. Primary cell for el<?Pub Caret?>ectric batteries: US, 3536532A. 1970-<month>10</month>-<day>27</day>
2   N. Watanabe, M. Fukuda. High energy density battery: US, 3700502A. 1972-<month>10</month>-<day>24</day>
3   M. Fukuda, T. Iijima, D. H. Collins. Lithium-poly-carbonmonofluoride cylindrical type batteries. In: Proceedings of the 9th International Power Sources Symposium. London: Academic Press, 1974: 16
4   T. Nakajima. Carbon-fluorine compounds as battery materials. J. Fluor. Chem., 1999, 100(1−2): 57−61
5   G. G. Amatucci, N. Pereira. Fluoride based electrode materials for advanced energy storage devices. J. Fluor. Chem., 2007, 128(4): 243−262
6   C. Y. Ouyang, L. Q. Chen. Physics towards next generation Li secondary batteries materials: A short review from computational materials design perspective. Sci. China-Phys. Mech. Astron., 2013, 56(12): 2278−2292
7   W. Liu, H. Li, J. Y. Xie, Z. W. Fu. Rechargeable room-temperature CFx-sodium battery. ACS Appl. Mater. Interfaces, 2014, 6(4): 2209−2212
8   G. Kresse, J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter, 1996, 54(16): 11169−11186
9   P. E. Blöchl. Projector augmented-wave method. Phys. Rev. B Condens. Matter, 1994, 50(24): 17953−17979
10   Y. Wang, J. P. Perdew. Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Phys. Rev. B Condens. Matter, 1991, 44(24): 13298−13307
11   H. J. Monkhorst, J. D. Pack. Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13(12): 5188−5192
12   W. Tang, E. Sanville, G. Henkelman. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter, 2009, 21(8): 084204
[1] Zhuo Cheng, Lang Qin, Jonathan A. Fan, Liang-Shih Fan. New Insight into the Development of Oxygen Carrier Materials for Chemical Looping Systems[J]. Engineering, 2018, 4(3): 343 -351 .
[2] Jennifer A. Clark, Erik E. Santiso. Carbon Sequestration through CO2 Foam-Enhanced Oil Recovery: A Green Chemistry Perspective[J]. Engineering, 2018, 4(3): 336 -342 .
[3] Andrea Di Maria, Karel Van Acker. Turning Industrial Residues into Resources: An Environmental Impact Assessment of Goethite Valorization[J]. Engineering, 2018, 4(3): 421 -429 .
[4] Lance A. Davis. Falcon Heavy[J]. Engineering, 2018, 4(3): 300 .
[5] Augusta Maria Paci. A Research and Innovation Policy for Sustainable S&T: A Comment on the Essay ‘‘Exploring the Logic and Landscape of the Knowledge System”[J]. Engineering, 2018, 4(3): 306 -308 .
[6] Ning Duan. When Will Speed of Progress in Green Science and Technology Exceed that of Resource Exploitation and Pollutant Generation?[J]. Engineering, 2018, 4(3): 299 .
[7] Jian-guo Li, Kai Zhan. Intelligent Mining Technology for an Underground Metal Mine Based on Unmanned Equipment[J]. Engineering, 2018, 4(3): 381 -391 .
[8] Veena Sahajwalla. Green Processes: Transforming Waste into Valuable Resources[J]. Engineering, 2018, 4(3): 309 -310 .
[9] Junye Wang, Hualin Wang, Yi Fan. Techno-Economic Challenges of Fuel Cell Commercialization[J]. Engineering, 2018, 4(3): 352 -360 .
[10] Raymond RedCorn, Samira Fatemi, Abigail S. Engelberth. Comparing End-Use Potential for Industrial Food-Waste Sources[J]. Engineering, 2018, 4(3): 371 -380 .
[11] Ning Duan, Linhua Jiang, Fuyuan Xu, Ge Zhang. A Non-Contact Original-State Online Real-Time Monitoring Method for Complex Liquids in Industrial Processes[J]. Engineering, 2018, 4(3): 392 -397 .
[12] Keith E. Gubbins, Kai Gu, Liangliang Huang, Yun Long, J. Matthew Mansell, Erik E. Santiso, Kaihang Shi, Małgorzata Ś liwińska-Bartkowiak, Deepti Srivastava. Surface-Driven High-Pressure Processing[J]. Engineering, 2018, 4(3): 311 -320 .
[13] Steff Van Loy, Koen Binnemans, Tom Van Gerven. Mechanochemical-Assisted Leaching of Lamp Phosphors: A Green Engineering Approach for Rare-Earth Recovery[J]. Engineering, 2018, 4(3): 398 -405 .
[14] Robert S. Weber, Johnathan E. Holladay. Modularized Production of Value-Added Products and Fuels from Distributed Waste Carbon-Rich Feedstocks[J]. Engineering, 2018, 4(3): 330 -335 .
[15] Hualin Wang, Pengbo Fu, Jianping Li, Yuan Huang, Ying Zhao, Lai Jiang, Xiangchen Fang, Tao Yang, Zhaohui Huang, Cheng Huang. Separation-and-Recovery Technology for Organic Waste Liquid with a High Concentration of Inorganic Particles[J]. Engineering, 2018, 4(3): 406 -415 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.