Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2015, Vol. 1 Issue (2) : 234 -242
Research |
High-Throughput Screening Using Fourier-Transform Infrared Imaging
Erdem Sasmaz,Kathleen Mingle,Jochen Lauterbach()
SmartState Center for Strategic Approaches to the Generation of Electricity (SAGE), Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA

Efficient parallel screening of combinatorial libraries is one of the most challenging aspects of the high-throughput (HT) heterogeneous catalysis workflow. Today, a number of methods have been used in HT catalyst studies, including various optical, mass-spectrometry, and gas-chromatography techniques. Of these, rapid-scanning Fourier-transform infrared (FTIR) imaging is one of the fastest and most versatile screening techniques. Here, the new design of the 16-channel HT reactor is presented and test results for its accuracy and reproducibility are shown. The performance of the system was evaluated through the oxidation of CO over commercial Pd/Al2O3 and cobalt oxide nanoparticles synthesized with different reducer-reductant molar ratios, surfactant types, metal and surfactant concentrations, synthesis temperatures, and ramp rates.

Keywords high-throughput      FTIR imaging      screening      cobalt oxide      CO oxidation     
Corresponding Authors: Jochen Lauterbach   
Just Accepted Date: 30 June 2015   Issue Date: 16 September 2015
E-mail this article
E-mail Alert
Articles by authors
Erdem Sasmaz
Kathleen Mingle
Jochen Lauterbach
Cite this article:   
Erdem Sasmaz,Kathleen Mingle,Jochen Lauterbach. High-Throughput Screening Using Fourier-Transform Infrared Imaging[J]. Engineering, 2015, 1(2): 234 -242 .
URL:     OR
1   Anon. Recognizing the best in innovation: Breakthrough catalyst. R&D Magazine, 2005, September: 20
2   M. Baerns, M. Holeňa. Approaches in the development of heterogeneous catalysts. In: M. Baerns, M. Holeňa, eds. Combinatorial Development of Solid Catalytic Materials: Design of High-Throughput Experiments, Data Analysis, Data Mining. London: Imperial College Press, 2009: 7−20
3   A. Jain, Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mat., 2013, 1(1): 011002
4   H. Shibata, Heterogeneous catalysis high throughput workflow: A case study involving propane oxidative dehydrogenation. In: A. Hagemeyer, A. F. Volpe Jr., eds. Modern Applications of High Throughput R&D in Heterogeneous Catalysis. Sharjah: Bentham Science Publishers, 2014: 173−196
5   H. W. Turner, A. F. Volpe Jr., W. H. Weinberg. High-throughput heterogeneous catalyst research. Surf. Sci., 2009, 603(10−12): 1763−1769
6   I. E. Maxwell, P. van den Brink, R. S. Downing, A. H. Sijpkes, S. Gomez, Th. Maschmeyer. High-throughput technologies to enhance innovation in catalysis. Top. Catal., 2003, 24(1−4): 125−135
7   W. F. Maier, K. Stöwe, S. Sieg. Combinatorial and high-throughput materials science. Angew. Chem. Int. Ed. Engl., 2007, 46(32): 6016−6067
8   D. Farrusseng. High-throughput heterogeneous catalysis. Surf. Sci. Rep., 2008, 63(11): 487−513
9   R. Potyrailo, K. Rajan, K. Stoewe, I. Takeuchi, B. Chisholm, H. Lam. Combinatorial and high-throughput screening of materials libraries: Review of state of the art. ACS Comb. Sci., 2011, 13(6): 579−633
10   J. P. Holdren. Materials Genome Initiative for Global Competitiveness. Washington, DC: National Science and Technology Council, 2011
11   D. D. Devore, R. M. Jenkins. Impact of high throughput experimentation on homogeneous catalysis research. Comment. Inorg. Chem., 2014, 34(1−2): 17−41
12   J. Lauterbach, E. Sasmaz, J. Bedenbaugh, S. Kim, J. Hattrick-Simpers. Discovery and optimization of coking and sulfur resistant Bi-metallic catalyst for cracking JP-8: From thin film libraries to single powders. In: A. Hagemeyer, A. F. Volpe Jr., eds. Modern Applications of High Throughput R&D in Heterogeneous Catalysis. Sharjah: Bentham Science Publishers, 2014: 89−117
13   S. Senkan. Combinatorial heterogeneous catalysis—A new path in an old field. Angew. Chem. Int. Ed. Engl., 2001, 40(2): 312−329
14   J. R. Ebner, M. R. Thompson. An active site hypothesis for well-crystallized vanadium phosphorus oxide catalyst systems. Catal. Today, 1993, 16(1): 51−60
15   R. Schlögl. Combinatorial chemistry in heterogeneous catalysis: A new scientific approach or “the King’s New Clothes”? Angew. Chem. Int. Edit., 1998, 37(17): 2333−2336
16   U. Rodemerck, M. Baerns, M. Holena, D. Wolf. Application of a genetic algorithm and a neural network for the discovery and optimization of new solid catalytic materials. Appl. Surf. Sci., 2004, 223(1−3): 168−174
17   J. M. Caruthers, Catalyst design: Knowledge extraction from high-throughput experimentation. J. Catal., 2003, 216(1−2): 98−109
18   Y. Yang, T. Lin, X. L. Weng, J. A. Darr, X. Z. Wang. Data flow modeling, data mining and QSAR in high-throughput discovery of functional nanomaterials. Comput. Chem. Eng., 2011, 35(4): 671−678
19   A. G. Maldonado, G. Rothenberg. Predictive modeling in catalysis—From dream to reality. Chem. Eng. Prog., 2009, 105(6): 26−32
20   G. Rothenberg. Data mining in catalysis: Separating knowledge from garbage. Catal. Today, 2008, 137(1): 2−10
21   J. M. Serra, A. Corma, A. Chica, E. Argente, V. Botti. Can artificial neural networks help the experimentation in catalysis? Catal. Today, 2003, 81(3): 393−403
22   J. M. Serra, A. Corma, E. Argente, S. Valero, V. Botti. Neural networks for modelling of kinetic reaction data applicable to catalyst scale up and process control and optimisation in the frame of combinatorial catalysis. Appl. Catal. A Gen., 2003, 254(1): 133−145
23   H. U. Gremlich. The use of optical spectroscopy in combinatorial chemistry. Biotechnol. Bioeng., 1998/1999, 61(3): 179−187
24   S. Schmatloch, M. A. R. Meier, U. S. Schubert. Instrumentation for combinatorial and high-throughput polymer research: A short overview. Macromol. Rapid Comm., 2003, 24(1): 33−46
25   Y. Zhang, X. Gong, H. Zhang, R. C. Larock, E. S. Yeung. Combinatorial screening of homogeneous catalysis and reaction optimization based on multiplexed capillary electrophoresis. J. Comb. Chem., 2000, 2(5): 450−452
26   N. E. Olong, K. Stöwe, W. F. Maier. A combinatorial approach for the discovery of low temperature soot oxidation catalysts. Appl. Catal. B Environ., 2007, 74(1−2): 19−25
27   F. C. Moates, M. Somani, J. Annamalai, J. T. Richardson, D. Luss, R. C. Willson. Infrared thermographic screening of combinatorial libraries of heterogeneous catalysts. Ind. Eng. Chem. Res., 1996, 35(12): 4801−4803
28   A. Holzwarth, H. W. Schmidt, W. F. Maier. Detection of catalytic activity in combinatorial libraries of heterogeneous catalysts by IR thermography. Angew. Chem. Int. Edit., 1998, 37(19): 2644−2647
29   C. Brooks, High throughput discovery of CO oxidation/VOC combustion and water-gas shift catalysts for industrial multi-component streams. Top. Catal., 2006, 38(1−3): 195−209
30   S. J. Taylor, J. P. Morken. Thermographic selection of effective catalysts from an encoded polymer-bound library. Science, 1998, 280(5361): 267−270
31   J. Klein, Accelerating lead discovery via advanced screening methodologies. Catal. Today, 2003, 81(3): 329−335
32   N. Na, S. Zhang, X. Wang, X. Zhang. Cataluminescence-based array imaging for high-throughput screening of heterogeneous catalysts. Anal. Chem., 2009, 81(6): 2092−2097
33   M. Breysse, B. Claudel, L. Faure, M. Guenin, R. J. J. Williams. Chemiluminescence during the catalysis of carbon monoxide oxidation on a thoria surface. J. Catal., 1976, 45(2): 137−144
34   H. Su, E. S. Yeung. High-throughput screening of heterogeneous catalysts by laser-induced fluorescence imaging. J. Am. Chem. Soc., 2000, 122(30): 7422−7423
35   H. Su, Y. Hou, R. S. Houk, G. L. Schrader, E. S. Yeung. Combinatorial screening of heterogeneous catalysis in selective oxidation of naphthalene by laser-induced fluorescence imaging. Anal. Chem., 2001, 73(18): 4434−4440
36   S. M. Senkan. High-throughput screening of solid-state catalyst libraries. Nature, 1998, 394(6691): 350−353
37   S. M. Senkan, S. Ozturk. Discovery and optimization of heterogeneous catalysts by using combinatorial chemistry. Angew. Chem. Int. Edit., 1999, 38(6): 791−795
38   P. Cong, High-throughput synthesis and screening of combinatorial heterogeneous catalyst libraries. Angew. Chem. Int. Edit., 1999, 38(4): 483−488
39   S. Senkan, K. Krantz, S. Ozturk, V. V. Zengin, I. I. Onal. High-throughput testing of heterogeneous catalyst libraries using array microreactors and mass spectrometry. Angew. Chem. Int. Ed. Engl., 1999, 38(18): 2794−2799
40   H. Wang, Z. Liu, J. Shen. Quantified MS analysis applied to combinatorial heterogeneous catalyst libraries. J. Comb. Chem., 2003, 5(6): 802−808
41   M. Richter, Combinatorial preparation and high-throughput catalytic tests of multi-component deNOx catalysts. Appl. Catal. B Environ., 2002, 36(4): 261−277
42   A. Hagemeyer, Application of combinatorial catalysis for the direct amination of benzene to aniline. Appl. Catal. A Gen., 2002, 227(1−2): 43−61
43   S. Gomez, J. A. Peters, J. C. van der Waal, T. Maschmeyer. High-throughput experimentation as a tool in catalyst design for the reductive amination of benzaldehyde. Appl. Catal. A Gen., 2003, 254(1): 77−84
44   C. Hoffmann, H. W. Schmidt, F. Schüth. A multipurpose parallelized 49-channel reactor for the screening of catalysts: Methane oxidation as the example reaction. J. Catal., 2001, 198(2): 348−354
45   M. Lucas, P. Claus. High throughput screening in monolith reactors for total oxidation reactions. Appl. Catal. A Gen., 2003, 254(1): 35−43
46   C. Kiener. High-throughput screening under demanding conditions: Cu/ZnO catalysts in high pressure methanol synthesis as an example. J. Catal., 2003, 216(1−2): 110−119
47   J. E. Bedenbaugh, S. Kim, E. Sasmaz, J. Lauterbach. High-throughput investigation of catalysts for JP-8 fuel cracking to liquefied petroleum gas. ACS Comb. Sci., 2013, 15(9): 491−497
48   O. Trapp. Boosting the throughput of separation techniques by “multiplexing”. Angew. Chem. Int. Ed. Engl., 2007, 46(29): 5609−5613
49   O. Trapp. Gas chromatographic high-throughput screening techniques in catalysis. J. Chromatogr. A, 2008, 1184(1−2): 160−190
50   R. R. Ernst, W. A. Anderson. Application of Fourier transform spectroscopy to magnetic resonance. Rev. Sci. Instrum., 1966, 37(1): 93−102
51   M. B. Comisarow, A. G. Marshall. Fourier transform ion cyclotron resonance spectroscopy. Chem. Phys. Lett., 1974, 25(2): 282−283
52   O. Trapp, J. R. Kimmel, O. K. Yoon, I. A. Zuleta, F. M. Fernandez, R. N. Zare. Continuous two-channel time-of-flight mass spectrometric detection of electrosprayed ions. Angew. Chem. Int. Ed. Engl., 2004, 43(47): 6541−6544
53   E. N. Lewis, Fourier transform spectroscopic imaging using an infrared focal-plane array detector. Anal. Chem., 1995, 67(19): 3377−3381
54   C. M. Snively, G. Oskarsdottir, J. Lauterbach. Chemically sensitive high throughput parallel analysis of solid phase supported library members. J. Comb. Chem., 2000, 2(3): 243−245
55   C. M. Snively, G. Oskarsdottir, J. Lauterbach. Parallel analysis of the reaction products from combinatorial catalyst libraries. Angew. Chem. Int. Ed. Engl., 2001, 40(16): 3028−3030
56   C. M. Snively, S. Katzenberger, G. Oskarsdottir, J. Lauterbach. Fourier-transform infrared imaging using a rapid-scan spectrometer. Opt. Lett., 1999, 24(24): 1841−1843
57   C. M. Snively, G. Oskarsdottir, J. Lauterbach. Chemically sensitive parallel analysis of combinatorial catalyst libraries. Catal. Today, 2001, 67(4): 357−368
58   C. M. Snively, J. Lauterbach, M. Christopher. Sampling accessories for HTE of combinatorial libraries using spectral imaging. Spectroscopy, 2002, 17(4), 26−33
59   R. J. Hendershot, W. B. Rogers, C. M. Snively, B. Ogunnaike, J. Lauterbach. Development and optimization of NOx storage and reduction catalysts using statistically guided high-throughput experimentation. Catal. Today, 2004, 98(3): 375−385
60   R. J. Hendershot, R. Vijay, C. M. Snively, J. Lauterbach. High-throughput study of the performance of storage and reduction catalysts as a function of cycling conditions and catalyst composition. Chem. Eng. Sci., 2006, 61(12): 3907−3916
61   R. Vijay, Noble metal free NOx storage catalysts using cobalt discovered via high-throughput experimentation. Catal. Commun., 2005, 6(2): 167−171
62   B. J. Feist. High throughput experimentation and microkinetic modeling (Master’s thesis). Newark, DE: University of Delaware, 2006
63   D. W. Fickel, E. D’Addio, J. A. Lauterbach, R. F. Lobo. The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites. Appl. Catal. B Environ., 2011, 102(3−4): 441−448
64   J. C. Dellamorte, J. Lauterbach, M. A. Barteau. Effect of preparation conditions on Ag catalysts for ethylene epoxidation. Top. Catal., 2010, 53(1−2): 13−18
65   J. C. Dellamorte, J. Lauterbach, M. A. Barteau. Palladium-silver bimetallic catalysts with improved activity and selectivity for ethylene epoxidation. Appl. Catal. A Gen., 2011, 391(1−2): 281−288
66   E. D’Addio. High throughput Investigation of supported catalysts for COx-free hydrogen production from ammonia decomposition (Doctoral dissertation). Newark, DE: University of Delaware, 2011
67   S. Salim. Development of high-throughput catalyst screening for ammonia based selective catalytic reduction of nitric oxide with parallel analysis using Fourier transform infrared imaging (Master’s thesis). Columbia, SC: University of South Carolina, 2013
68   P. Kubanek, O. Busch, S. Thomson, H. W. Schmidt, F. Schüth. Imaging reflection IR spectroscopy as a tool to achieve higher integration for high-throughput experimentation in catalysis research. J. Comb. Chem., 2004, 6(3): 420−425
69   K. L. A. Chan, S. G. Kazarian. FTIR spectroscopic imaging of dissolution of a solid dispersion of nifedipine in poly(ethylene glycol). Mol. Pharm., 2004, 1(4): 331−335
70   K. L. A. Chan, S. G. Kazarian. New opportunities in micro- and macro-attenuated total reflection infrared spectroscopic imaging: Spatial resolution and sampling versatility. Appl. Spectrosc., 2003, 57(4): 381−389
71   K. L. A. Chan, S. G. Kazarian, A. Mavraki, D. R. Williams. Fourier transform infrared imaging of human hair with a high spatial resolution without the use of a synchrotron. Appl. Spectrosc., 2005, 59(2): 149−155
72   K. L. A. Chan, S. G. Kazarian. High-throughput study of poly(ethylene glycol)/ibuprofen formulations under controlled environment using FTIR imaging. J. Comb. Chem., 2006, 8(1): 26−31
73   R. J. Hendershot, A novel reactor system for high throughput catalyst testing under realistic conditions. Appl. Catal. A Gen., 2003, 254(1): 107−120
74   S. S. Lasko. Quantitative high-throughput studies of catalyst libraries (Master’s thesis). West Lafayette, IN: Purdue University, 2002
75   Anon. GRAMS/AITM with PLSplus/IQ add-on. Waltham, MA: Thermo Fischer Scientific Inc., 2009
76   N. Wu, L. Fu, M. Su, M. Aslam, K. C. Wong, V. P. Dravid. Interaction of fatty acid monolayers with cobalt nanoparticles. Nano Lett., 2004, 4(2): 383−386
77   C. Wen, X. Zhang, S. E. Lofland, J. Lauterbach, J. Hattrick-Simpers. Synthesis of mono-disperse CoFe alloy nanoparticles with high activity toward NaBH4 hydrolysis. Int. J. Hydrogen Energy, 2013, 38(15): 6436−6441
78   D. C. Montgomery. Design and Analysis of Experiments. 3rd ed. Somerset, NJ: John Wiley & Sons, Inc., 1991
79   L. V. Azaroff, M. J. Buerger. The Powder Method in X-Ray Crystallography. New York: McGraw-Hill, 1958
80   N. F. M. Henry, H. Lipson, W. A. Wooster. The Interpretation of X-Ray Diffraction Photographs. London: MacMillon, 1961
81   Anon. Minitab 17 statistical software. State College, PA: Minitab, Inc., 2010
[1] Samuel S. Mao, Xiaojun Zhang. High-Throughput Multi-Plume Pulsed-Laser Deposition for Materials Exploration and Optimization[J]. Engineering, 2015, 1(3): 367 -371 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.