Please wait a minute...
Submit  |   Chinese  | 
 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2015, Vol. 1 Issue (2) : 225 -233     https://doi.org/10.15302/J-ENG-2015041
Research |
Individualized Pixel Synthesis and Characterization of Combinatorial Materials Chips
Xiao-Dong Xiang1,Gang Wang2,Xiaokun Zhang3,Yong Xiang3,Hong Wang1,()
1. State Key Laboratory of Green Building Materials, China Building Materials Academy, Beijing 100024, China
2. Intematix Corporation, Fremont, CA 94538, USA
3. State Key Laboratory of Electronic Thin Films & Integrated Devices, School of Energy Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
Abstract
Abstract  

Conventionally, an experimentally determined phase diagram requires studies of phase formation at a range of temperatures for each composition, which takes years of effort from multiple research groups. Combinatorial materials chip technology, featuring high-throughput synthesis and characterization, is able to determine the phase diagram of an entire composition spread of a binary or ternary system at a single temperature on one materials library, which, though significantly increasing efficiency, still requires many libraries processed at a series of temperatures in order to complete a phase diagram. In this paper, we propose a “one-chip method” to construct a complete phase diagram by individually synthesizing each pixel step by step with a progressive pulse of energy to heat at different temperatures while monitoring the phase evolution on the pixel in situ in real time. Repeating this process pixel by pixel throughout the whole chip allows the entire binary or ternary phase diagram to be mapped on one chip in a single experiment. The feasibility of this methodology is demonstrated in a study of a Ge-Sb-Te ternary alloy system, on which the amorphous-crystalline phase boundary is determined.

Keywords combinatorial materials chip      phase diagram      pixel synthesis      in-situ characterization      phase-boundary determination     
Fund: 
Corresponding Authors: Hong Wang   
Just Accepted Date: 30 June 2015   Issue Date: 16 September 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiao-Dong Xiang
Gang Wang
Xiaokun Zhang
Yong Xiang
Hong Wang
Cite this article:   
Xiao-Dong Xiang,Gang Wang,Xiaokun Zhang, et al. Individualized Pixel Synthesis and Characterization of Combinatorial Materials Chips[J]. Engineering, 2015, 1(2): 225 -233 .
URL:  
http://engineering.org.cn/EN/10.15302/J-ENG-2015041     OR     http://engineering.org.cn/EN/Y2015/V1/I2/225
References
1   X. D. Xiang, A combinatorial approach to materials discovery. Science, 1995, 268(5218): 1738−1740
2   M. L. Green, I. Takeuchi, J. R. Hattrick-Simpers. Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials. J. Appl. Phys., 2013, 113(23): 231101
3   R. A. Potyrailo, V. M. Mirsky. Combinatorial and high-throughput development of sensing materials: The first 10 years. Chem. Rev., 2008, 108(2): 770−813
4   S. S. Mao. High throughput growth and characterization of thin film materials. J. Cryst. Growth, 2013, 379: 123−130
5   L. Chen, J. Bao, C. Gao, S. Huang, C. Liu, W. Liu. Combinatorial synthesis of insoluble oxide library from ultrafine/nano particle suspension using a drop-on-demand inkjet delivery system. J. Comb. Chem., 2004, 6(5): 699−702
6   J. C. Zhao, M. R. Jackson, L. A. Peluso, L. N. Brewer. A diffusion multiple approach for the accelerated design of structural materials. MRS Bull., 2002, 27(04): 324−329
7   J. Montgomery. Chemistry. High-throughput discovery of new chemical reactions. Science, 2011, 333(6048): 1387−1388
8   J. M. Gregoire, D. Dale, A. Kazimirov, F. J. DiSalvo, R. B. van Dover. Cosputtered composition-spread reproducibility established by high-throughput x-ray fluorescence. J. Vac. Sci. Technol. A, 2010, 28(5): 1279−1280
9   J. M. Gregoire, D. Dale, A. Kazimirov, F. J. DiSalvo, R. B. van Dover. High energy x-ray diffraction/x-ray fluorescence spectroscopy for high-throughput analysis of composition spread thin films. Rev. Sci. Instrum., 2009, 80(12): 123905
10   E. Reddington, Combinatorial electrochemistry: A highly parallel, optical screening method for discovery of better electrocatalysts. Science, 1998, 280(5370): 1735−1737
11   X. Liu, Inkjet printing assisted synthesis of multicomponent mesoporous metal oxides for ultrafast catalyst exploration. Nano Lett., 2012, 12(11): 5733−5739
12   T. Wei, X. D. Xiang, W. G. Wallace-Freedman, P. G. Schultz. Scanning tip microwave near-field microscope. Appl. Phys. Lett., 1996, 68(24): 3506−3508
13   A. Oral, S. J. Bending, M. Henini. Scanning hall probe microscopy of superconductors and magnetic materials. J. Vac. Sci. Technol. B, 1996, 14(2): 1202−1205
14   I. Takeuchi, Monolithic multichannel ultraviolet detector arrays and continuous phase evolution in MgxZn1–xO composition spreads. J. Appl. Phys., 2003, 94(11): 7336−7340
15   S. Huxtable, D. G. Cahill, V. Fauconnier, J. O. White, J. C. Zhao. Thermal conductivity imaging at micrometre-scale resolution for combinatorial studies of materials. Nat. Mater., 2004, 3(5): 298−301
16   H. J. Kim, J. H. Han, R. Kaiser, K. H. Oh, J. J. Vlassak. High-throughput analysis of thin-film stresses using arrays of micromachined cantilever beams. Rev. Sci. Instrum., 2008, 79(4): 045112
17   C. Allibert, C. Bernard, N. Valignat, M. Dombre. Co-Cr binary system: Experimental re-determination of the phase diagram and comparison with the diagram calculated from the thermodynamic data. J. Less Common Met., 1978, 59(2): 211−228
18   K. Ishida, T. Nishizawa. The Co-Cr (cobalt-chromium) system. Bull. Alloy Phase Diagr., 1990, 11(4): 357−370
19   T. Nishizawa, K. Ishida. The Co-Fe (cobalt-iron) system. Bull. Alloy Phase Diagr., 1984, 5(3): 250−259
20   J. C. Tedenac. Cobalt-iron-nickel. In: G. Effenberg, S. Ilyenko, eds. Iron Systems, Part 2. Berlin: Springer Berlin Heidelberg, 2008: 653−672
21   V. Raghavan. Co-Fe-Ni (cobalt-iron-nickel). J. Phase Equilibria, 1994, 15(5): 526−527
22   Y. K. Yoo, Identification of amorphous phases in the Fe-Ni-Co ternary alloy system using continuous phase diagram material chips. Intermetallics, 2006, 14(3): 241−247
23   H. Chang, I. Takeuchi, X. D. Xiang. A low-loss composition region identified from a thin-film composition spread of (Ba1–x–y SrxCay)TiO3. Appl. Phys. Lett., 1999, 74(8): 1165−1167
24   Y. K. Yoo, Strong correlation between high-temperature electronic and low-temperature magnetic ordering in La1–xCaxMnO3 continuous phase diagram. Phys. Rev. B, 2001, 63(22): 224421
25   I. Takeuchi, Microstructural properties of (Ba, Sr)TiO3 films fabricated from BaF2/SrF2/TiO2 amorphous multilayers using the combinatorial precursor method. J. Appl. Phys., 2001, 90(5): 2474−2478
26   Y. K. Yoo, F. Duewer, H. Yang, D. Yi, J. W. Li, X. D. Xiang. Room-temperature electronic phase transitions in the continuous phase diagrams of perovskite manganites. Nature, 2000, 406(6797): 704−708
27   L. Fister, D. C. Johnson. Controlling solid-state reaction mechanisms using diffusion length in ultrathin-film superlattice composites. J. Am. Chem. Soc., 1992, 114(12): 4639−4644
28   I. Takeuchi, Combinatorial synthesis and evaluation of epitaxial ferroelectric device libraries. Appl. Phys. Lett., 1998, 73(7): 894−896
29   A. V. Kolobov. Information storage: Around the phase-change cycle. Nat. Mater., 2008, 7(5): 351−353
30   G. I. Meijer. Materials science. Who wins the nonvolatile memory race? Science, 2008, 319(5870): 1625−1626
31   G. Atwood. Engineering. Phase-change materials for electronic memories. Science, 2008, 321(5886): 210−211
32   H. F. Hamann, M. O’Boyle, Y. C. Martin, M. Rooks, H. K. Wickramasinghe. Ultra-high-density phase-change storage and memory. Nat. Mater., 2006, 5(5): 383−387
33   M. Wuttig, D. Lüsebrink, D. Wamwangi, W. Wełnic, M. Gillessen, R. Dronskowski. The role of vacancies and local distortions in the design of new phase-change materials. Nat. Mater., 2007, 6(2): 122−128
34   C. Peng, Improved thermal stability and electrical properties for Al-Sb-Te based phase-change memory. ECS Solid State Lett., 2012, 1(2): 38−41
35   X. Zhou, Phase transition characteristics of Al-Sb phase change materials for phase change memory application. Appl. Phys. Lett., 2013, 103(7): 072114
36   M. Belhadji, N. Benameur, J. M. Saiter, J. Grenet. Application of Gibbs-Di Marzio modified equation to the Ge-Te-Sb vitreous system. Phys. Status Solidi B, 1997, 201(2): 377−380
37   J. Siegel, C. N. Afonso, J. Solis. Dynamics of ultrafast reversible phase transitions in GeSb films triggered by picosecond laser pulses. Appl. Phys. Lett., 1999, 75(20): 3102−3104
38   H. J. Borg, Phase-change media for high-numerical-aperture and blue-wavelength recording. Jpn. J. Appl. Phys., 2001, 40(Part 1, 3B): 1592−1597
39   B. J. Kooi, J. Th. M. De Hosson. On the crystallization of thin films composed of Sb3.6Te with Ge for rewritable data storage. J. Appl. Phys., 2004, 95(9): 4714−4721
40   B. J. Kooi, W. M. G. Groot, J. Th. M. De Hosson. In situ transmission electron microscopy study of the crystallization of Ge2Sb2Te5. J. Appl. Phys., 2004, 95(3): 924−932
Related
[1] Zhuo Cheng, Lang Qin, Jonathan A. Fan, Liang-Shih Fan. New Insight into the Development of Oxygen Carrier Materials for Chemical Looping Systems[J]. Engineering, 2018, 4(3): 343 -351 .
[2] Jennifer A. Clark, Erik E. Santiso. Carbon Sequestration through CO2 Foam-Enhanced Oil Recovery: A Green Chemistry Perspective[J]. Engineering, 2018, 4(3): 336 -342 .
[3] Andrea Di Maria, Karel Van Acker. Turning Industrial Residues into Resources: An Environmental Impact Assessment of Goethite Valorization[J]. Engineering, 2018, 4(3): 421 -429 .
[4] Lance A. Davis. Falcon Heavy[J]. Engineering, 2018, 4(3): 300 .
[5] Augusta Maria Paci. A Research and Innovation Policy for Sustainable S&T: A Comment on the Essay ‘‘Exploring the Logic and Landscape of the Knowledge System”[J]. Engineering, 2018, 4(3): 306 -308 .
[6] Ning Duan. When Will Speed of Progress in Green Science and Technology Exceed that of Resource Exploitation and Pollutant Generation?[J]. Engineering, 2018, 4(3): 299 .
[7] Jian-guo Li, Kai Zhan. Intelligent Mining Technology for an Underground Metal Mine Based on Unmanned Equipment[J]. Engineering, 2018, 4(3): 381 -391 .
[8] Veena Sahajwalla. Green Processes: Transforming Waste into Valuable Resources[J]. Engineering, 2018, 4(3): 309 -310 .
[9] Junye Wang, Hualin Wang, Yi Fan. Techno-Economic Challenges of Fuel Cell Commercialization[J]. Engineering, 2018, 4(3): 352 -360 .
[10] Raymond RedCorn, Samira Fatemi, Abigail S. Engelberth. Comparing End-Use Potential for Industrial Food-Waste Sources[J]. Engineering, 2018, 4(3): 371 -380 .
[11] Ning Duan, Linhua Jiang, Fuyuan Xu, Ge Zhang. A Non-Contact Original-State Online Real-Time Monitoring Method for Complex Liquids in Industrial Processes[J]. Engineering, 2018, 4(3): 392 -397 .
[12] Keith E. Gubbins, Kai Gu, Liangliang Huang, Yun Long, J. Matthew Mansell, Erik E. Santiso, Kaihang Shi, Małgorzata Ś liwińska-Bartkowiak, Deepti Srivastava. Surface-Driven High-Pressure Processing[J]. Engineering, 2018, 4(3): 311 -320 .
[13] Steff Van Loy, Koen Binnemans, Tom Van Gerven. Mechanochemical-Assisted Leaching of Lamp Phosphors: A Green Engineering Approach for Rare-Earth Recovery[J]. Engineering, 2018, 4(3): 398 -405 .
[14] Robert S. Weber, Johnathan E. Holladay. Modularized Production of Value-Added Products and Fuels from Distributed Waste Carbon-Rich Feedstocks[J]. Engineering, 2018, 4(3): 330 -335 .
[15] Hualin Wang, Pengbo Fu, Jianping Li, Yuan Huang, Ying Zhao, Lai Jiang, Xiangchen Fang, Tao Yang, Zhaohui Huang, Cheng Huang. Separation-and-Recovery Technology for Organic Waste Liquid with a High Concentration of Inorganic Particles[J]. Engineering, 2018, 4(3): 406 -415 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
京ICP备11030251号-2

 Engineering