Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2015, Vol. 1 Issue (4) : 506 -512
Research |
A Personal Desktop Liquid-Metal Printer as a Pervasive Electronics Manufacturing Tool for Society in the Near Future
Jun Yang1,Yang Yang1,Zhizhu He1,Bowei Chen1,Jing Liu1,2,()
1. Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
2. Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China

It has long been a dream in the electronics industry to be able to write out electronics directly, as simply as printing a picture onto paper with an office printer. The first-ever prototype of a liquid-metal printer has been invented and demonstrated by our lab, bringing this goal a key step closer. As part of a continuous endeavor, this work is dedicated to significantly extending such technology to the consumer level by making a very practical desktop liquid-metal printer for society in the near future. Through the industrial design and technical optimization of a series of key technical issues such as working reliability, printing resolution, automatic control, human-machine interface design, software, hardware, and integration between software and hardware, a high-quality personal desktop liquid-metal printer that is ready for mass production in industry was fabricated. Its basic features and important technical mechanisms are explained in this paper, along with demonstrations of several possible consumer end-uses for making functional devices such as light-emitting diode (LED) displays. This liquid-metal printer is an automatic, easy-to-use, and low-cost personal electronics manufacturing tool with many possible applications. This paper discusses important roles that the new machine may play for a group of emerging needs. The prospective future of this cutting-edge technology is outlined, along with a comparative interpretation of several historical printing methods. This desktop liquid-metal printer is expected to become a basic electronics manufacturing tool for a wide variety of emerging practices in the academic realm, in industry, and in education as well as for individual end-users in the near future.

Keywords liquid-metal printer      printed electronics      additive manufacturing      maker      do-it-yourself (DIY) electronics      pervasive technology     
Corresponding Authors: Jing Liu   
Just Accepted Date: 23 December 2015   Issue Date: 04 January 2016
E-mail this article
E-mail Alert
Articles by authors
Jun Yang
Yang Yang
Zhizhu He
Bowei Chen
Jing Liu
Cite this article:   
Jun Yang,Yang Yang,Zhizhu He, et al. A Personal Desktop Liquid-Metal Printer as a Pervasive Electronics Manufacturing Tool for Society in the Near Future[J]. Engineering, 2015, 1(4): 506 -512 .
URL:     OR
1   M. Bohr, K. Mistry. Intel’s Revolutionary 22 nm Transistor Technology. Santa Clara, California: Intel, 2012.
2   H. Sirringhaus, High-resolution inkjet printing of all-polymer transistor circuits. Science, 2000, 290(5499): 2123–2126
3   Y. Zheng, Z. Z. He, J. Yang, J. Liu. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism. Sci. Rep., 2014, 4: 4588
4   J. J. Adams,  Conformal printing of electrically small antennas on three-dimensional surfaces. Adv. Mater., 2011, 23(11): 1335–1340
5   H. S. Kim, S. R. Dhage, D. E. Shim, H. T. Hahn. Intense pulsed light sintering of copper nanoink for printed electronics. Appl. Phys., A Mater. Sci. Process., 2009, 97(4): 791–798 
6   S. B. Walker, J. A. Lewis. Reactive silver inks for patterning high-conductivity features at mild temperatures. J. Am. Chem. Soc., 2012, 134(3): 1419–1421
7   M. Grouchko, A. Kamyshny, C. F. Mihailescu, D. F. Anghel, S. Magdassi. Conductive inks with a “built-in” mechanism that enables sintering at room temperature. ACS Nano, 2011, 5(4): 3354–3359
8   Q. Zhang, Y. Zheng, J. Liu. Direct writing of electronics based on alloy and metal (DREAM) ink: A newly emerging area and its impact on energy, environment and health sciences. Front. Energy, 2012, 6(4): 311–340
9   K. Ma, J. Liu. Liquid metal cooling in thermal management of computer chips. Front. Energy Power Eng. China, 2007, 1(4): 384–402
10   N. B. Morley, J. Burris, L. C. Cadwallader, M. D. Nornberg. GaInSn usage in the research laboratory. Rev. Sci. Instrum., 2008, 79(5): 056107
11   The Engineering ToolBox. Surface tension of some common liquids like water, mercury, oils and more. [2014-2-22].
12   Diversified Enterprises. Critical surface tension, surface free energy, contact angles with water, and Hansen sol<?Pub Caret?>ubility parameters for various polymers. [2014-02-22].
13   Y. Gao, H. Li, J. Liu. Direct writing of flexible electronics through room temperature liquid metal ink. PLoS ONE, 2012, 7(9): e45485
14   Y. Zheng, Z. He, Y. Gao, J. Liu. Direct desktop printed-circuits-on-paper flexible electronics. Sci. Rep., 2013, 3: 1786
15   Y. Kawahara, S. Hodges, N. W. Gong, S. Olberding, J. Steimle. Building functional prototypes using conductive inkjet printing. IEEE Pervas. Comput., 2014, 13(3): 30–38
[1] Shutian Liu, Quhao Li, Junhuan Liu, Wenjiong Chen, Yongcun Zhang. A Realization Method for Transforming a Topology Optimization Design into Additive Manufacturing Structures[J]. Engineering, 2018, 4(2): 277 -285 .
[2] Quy Bau Nguyen, Mui Ling Sharon Nai, Zhiguang Zhu, Chen-Nan Sun, Jun Wei, Wei Zhou. Characteristics of Inconel Powders for Powder-Bed Additive Manufacturing[J]. Engineering, 2017, 3(5): 695 -700 .
[3] Pinlian Han. Additive Design and Manufacturing of Jet Engine Parts[J]. Engineering, 2017, 3(5): 648 -652 .
[4] Patcharapit Promoppatum, Shi-Chune Yao, P. Chris Pistorius, Anthony D. Rollett. A Comprehensive Comparison of the Analytical and Numerical Prediction of the Thermal History and Solidification Microstructure of Inconel 718 Products Made by Laser Powder-Bed Fusion[J]. Engineering, 2017, 3(5): 685 -694 .
[5] Wentao Yan, Ya Qian, Weixin Ma, Bin Zhou, Yongxing Shen, Feng Lin. Modeling and Experimental Validation of the Electron Beam Selective Melting Process[J]. Engineering, 2017, 3(5): 701 -707 .
[6] Dongdong Gu, Chenglong Ma, Mujian Xia, Donghua Dai, Qimin Shi. A Multiscale Understanding of the Thermodynamic and Kinetic Mechanisms of Laser Additive Manufacturing[J]. Engineering, 2017, 3(5): 675 -684 .
[7] Zhen Zhang, Peng Yan, Guangbo Hao. A Large Range Flexure-Based Servo System Supporting Precision Additive Manufacturing[J]. Engineering, 2017, 3(5): 708 -715 .
[8] Amelia Yilin Lee, Jia An, Chee Kai Chua. Two-Way 4D Printing: A Review on the Reversibility of 3D-Printed Shape Memory Materials[J]. Engineering, 2017, 3(5): 663 -674 .
[9] Anders Clausen, Niels Aage, Ole Sigmund. Exploiting Additive Manufacturing Infill in Topology Optimization for Improved Buckling Load[J]. Engineering, 2016, 2(2): 250 -257 .
[10] Jia An, Joanne Ee Mei Teoh, Ratima Suntornnond, Chee Kai Chua. Design and 3D Printing of Scaffolds and Tissues[J]. Engineering, 2015, 1(2): 261 -268 .
[11] Chao Guo, Wenjun Ge, Feng Lin. Dual-Material Electron Beam Selective Melting: Hardware Development and Validation Studies[J]. Engineering, 2015, 1(1): 124 -130 .
[12] Bingheng Lu, Dichen Li, Xiaoyong Tian. Development Trends in Additive Manufacturing and 3D Printing[J]. Engineering, 2015, 1(1): 85 -89 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.