Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2015, Vol. 1 Issue (2) : 164 -166
News & Highlights |
Salinity Gradient Energy: Current State and New Trends
Olivier Schaetzle11,Cees J. N. Buisman1,2
1. Wetsus, European Center of Excellence for Sustainable Water Technology, Leeuwarden 8900 CC, the Netherlands
2. Sub-Department of Environmental Technology, Wagening University, Wageningen 6700 EV, the Netherlands

In this article we give an overview of the state of the art of salinity gradient technologies. We first introduce the concept of salinity gradient energy, before describing the current state of development of the most advanced of these technologies. We conclude with the new trends in the young field of salinity gradient technologies.

Keywords salinity gradient energy      pressure-retarded osmosis      reverses electrodialysis     
Just Accepted Date: 30 June 2015   Issue Date: 16 September 2015
E-mail this article
E-mail Alert
Articles by authors
Olivier Schaetzle
Cees J. N. Buisman
Cite this article:   
Olivier Schaetzle,Cees J. N. Buisman. Salinity Gradient Energy: Current State and New Trends[J]. Engineering, 2015, 1(2): 164 -166 .
URL:     OR
1   R. E. Pattle. Production of electric power by mixing fresh and salt water in the hydroelectric pile. Nature, 1954, 174(4431): 660
2   J. D. Isaacs, R. J. Seymour. The ocean as a power resource. Int. J. Environ. Stud., 1973, 4(1−4): 201−205
3   B. E. Logan, M. Elimelech. Membrane-based processes for sustainable power generation using water. Nature, 2012, 488(7411): 313−319
4   J. Veerman, M. Saakes, S. J. Metz, G. J. Harmsen. Reverse electrodialysis: Evaluation of suitable electrode systems. J. Appl. Electrochem., 2010, 40(8): 1461−1474
5   D. A. Vermaas, S. Bajracharya, B. B. Sales, M. Saakes, B. Hamelers, K. Nijmeijer. Clean energy generation using capacitive electrodes in reverse electrodialysis. Energy Environ. Sci., 2013, 6(2): 643−651
6   D. A. Vermaas, M. Saakes, K. Nijmeijer. Power generation using profiled membranes in reverse electrodialysis. J. Membrane. Sci., 2011, 385−386: 234−242
7   D. A. Vermaas, J. Veerman, M. Saakes, K. Nijmeijer. Influence of multivalent ions on renewable energy generation in reverse electrodialysis. Energy Environ. Sci., 2014, 7(4): 1434−1445
8   D. A. Vermaas, D. Kunteng, J. Veerman, M. Saakes, K. Nijmeijer. Periodic feedwater reversal and air sparging as antifouling strategies in reverse electrodialysis. Environ. Sci. Technol., 2014, 48(5): 3065−3073
9   D. Brogioli. Extracting renewable energy from a salinity difference using a capacitor. Phys. Rev. Lett., 2009, 103(5): 058501
10   B. B. Sales, M. Saakes, J. W. Post, C. J. Buisman, P. M. Biesheuvel, H. V. Hamelers. Direct power production from a water salinity difference in a membrane-modified supercapacitor flow cell. Environ. Sci. Technol., 2010, 44(14): 5661−5665
11   F. La Mantia, M. Pasta, H. D. Deshazer, B. E. Logan, Y. Cui. Batteries for efficient energy extraction from a water salinity difference. Nano Lett., 2011, 11(4): 1810−1813
12   R. A. Tufa, Potential of brackish water and brine for energy generation by salinity gradient power-reverse electrodialysis (SGP-RE). RSC Adv., 2014, 4(80): 42617−42623
13   B. B. Sales, O. S. Burheim, S. Porada, V. Presser, C. J. N. Buisman, H. V. M. Hamelers. Extraction of energy from small thermal differences near room temperature using capacitive membrane technology. Environ. Sci. Technol. Lett., 2014, 1(9): 356−360
14   S. Ahualli, M. M. Fernández, G. Iglesias, Á. Delgado, M. L. Jiménez. Temperature effects on energy production by salinity exchange. Environ. Sci. Technol., 2014, 48(20): 12378−12385
15   H. V. M. Hamelers, O. Schaetzle, J. M. Paz-García, P. M. Biesheuvel, C. J. N. Buisman. Harvesting energy from CO2 emissions. Environ. Sci. Technol. Lett., 2014, 1(1): 31−35
[1] Zhuo Cheng, Lang Qin, Jonathan A. Fan, Liang-Shih Fan. New Insight into the Development of Oxygen Carrier Materials for Chemical Looping Systems[J]. Engineering, 2018, 4(3): 343 -351 .
[2] Jennifer A. Clark, Erik E. Santiso. Carbon Sequestration through CO2 Foam-Enhanced Oil Recovery: A Green Chemistry Perspective[J]. Engineering, 2018, 4(3): 336 -342 .
[3] Andrea Di Maria, Karel Van Acker. Turning Industrial Residues into Resources: An Environmental Impact Assessment of Goethite Valorization[J]. Engineering, 2018, 4(3): 421 -429 .
[4] Lance A. Davis. Falcon Heavy[J]. Engineering, 2018, 4(3): 300 .
[5] Augusta Maria Paci. A Research and Innovation Policy for Sustainable S&T: A Comment on the Essay ‘‘Exploring the Logic and Landscape of the Knowledge System”[J]. Engineering, 2018, 4(3): 306 -308 .
[6] Ning Duan. When Will Speed of Progress in Green Science and Technology Exceed that of Resource Exploitation and Pollutant Generation?[J]. Engineering, 2018, 4(3): 299 .
[7] Jian-guo Li, Kai Zhan. Intelligent Mining Technology for an Underground Metal Mine Based on Unmanned Equipment[J]. Engineering, 2018, 4(3): 381 -391 .
[8] Veena Sahajwalla. Green Processes: Transforming Waste into Valuable Resources[J]. Engineering, 2018, 4(3): 309 -310 .
[9] Junye Wang, Hualin Wang, Yi Fan. Techno-Economic Challenges of Fuel Cell Commercialization[J]. Engineering, 2018, 4(3): 352 -360 .
[10] Raymond RedCorn, Samira Fatemi, Abigail S. Engelberth. Comparing End-Use Potential for Industrial Food-Waste Sources[J]. Engineering, 2018, 4(3): 371 -380 .
[11] Ning Duan, Linhua Jiang, Fuyuan Xu, Ge Zhang. A Non-Contact Original-State Online Real-Time Monitoring Method for Complex Liquids in Industrial Processes[J]. Engineering, 2018, 4(3): 392 -397 .
[12] Keith E. Gubbins, Kai Gu, Liangliang Huang, Yun Long, J. Matthew Mansell, Erik E. Santiso, Kaihang Shi, Małgorzata Ś liwińska-Bartkowiak, Deepti Srivastava. Surface-Driven High-Pressure Processing[J]. Engineering, 2018, 4(3): 311 -320 .
[13] Steff Van Loy, Koen Binnemans, Tom Van Gerven. Mechanochemical-Assisted Leaching of Lamp Phosphors: A Green Engineering Approach for Rare-Earth Recovery[J]. Engineering, 2018, 4(3): 398 -405 .
[14] Robert S. Weber, Johnathan E. Holladay. Modularized Production of Value-Added Products and Fuels from Distributed Waste Carbon-Rich Feedstocks[J]. Engineering, 2018, 4(3): 330 -335 .
[15] Hualin Wang, Pengbo Fu, Jianping Li, Yuan Huang, Ying Zhao, Lai Jiang, Xiangchen Fang, Tao Yang, Zhaohui Huang, Cheng Huang. Separation-and-Recovery Technology for Organic Waste Liquid with a High Concentration of Inorganic Particles[J]. Engineering, 2018, 4(3): 406 -415 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.