Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2015, Vol. 1 Issue (2) : 164 -166
News & Highlights |
Salinity Gradient Energy: Current State and New Trends
Olivier Schaetzle11,Cees J. N. Buisman1,2
1. Wetsus, European Center of Excellence for Sustainable Water Technology, Leeuwarden 8900 CC, the Netherlands
2. Sub-Department of Environmental Technology, Wagening University, Wageningen 6700 EV, the Netherlands

In this article we give an overview of the state of the art of salinity gradient technologies. We first introduce the concept of salinity gradient energy, before describing the current state of development of the most advanced of these technologies. We conclude with the new trends in the young field of salinity gradient technologies.

Keywords salinity gradient energy      pressure-retarded osmosis      reverses electrodialysis     
Just Accepted Date: 30 June 2015   Issue Date: 16 September 2015
E-mail this article
E-mail Alert
Articles by authors
Olivier Schaetzle
Cees J. N. Buisman
Cite this article:   
Olivier Schaetzle,Cees J. N. Buisman. Salinity Gradient Energy: Current State and New Trends[J]. Engineering, 2015, 1(2): 164 -166 .
URL:     OR
1   R. E. Pattle. Production of electric power by mixing fresh and salt water in the hydroelectric pile. Nature, 1954, 174(4431): 660
2   J. D. Isaacs, R. J. Seymour. The ocean as a power resource. Int. J. Environ. Stud., 1973, 4(1−4): 201−205
3   B. E. Logan, M. Elimelech. Membrane-based processes for sustainable power generation using water. Nature, 2012, 488(7411): 313−319
4   J. Veerman, M. Saakes, S. J. Metz, G. J. Harmsen. Reverse electrodialysis: Evaluation of suitable electrode systems. J. Appl. Electrochem., 2010, 40(8): 1461−1474
5   D. A. Vermaas, S. Bajracharya, B. B. Sales, M. Saakes, B. Hamelers, K. Nijmeijer. Clean energy generation using capacitive electrodes in reverse electrodialysis. Energy Environ. Sci., 2013, 6(2): 643−651
6   D. A. Vermaas, M. Saakes, K. Nijmeijer. Power generation using profiled membranes in reverse electrodialysis. J. Membrane. Sci., 2011, 385−386: 234−242
7   D. A. Vermaas, J. Veerman, M. Saakes, K. Nijmeijer. Influence of multivalent ions on renewable energy generation in reverse electrodialysis. Energy Environ. Sci., 2014, 7(4): 1434−1445
8   D. A. Vermaas, D. Kunteng, J. Veerman, M. Saakes, K. Nijmeijer. Periodic feedwater reversal and air sparging as antifouling strategies in reverse electrodialysis. Environ. Sci. Technol., 2014, 48(5): 3065−3073
9   D. Brogioli. Extracting renewable energy from a salinity difference using a capacitor. Phys. Rev. Lett., 2009, 103(5): 058501
10   B. B. Sales, M. Saakes, J. W. Post, C. J. Buisman, P. M. Biesheuvel, H. V. Hamelers. Direct power production from a water salinity difference in a membrane-modified supercapacitor flow cell. Environ. Sci. Technol., 2010, 44(14): 5661−5665
11   F. La Mantia, M. Pasta, H. D. Deshazer, B. E. Logan, Y. Cui. Batteries for efficient energy extraction from a water salinity difference. Nano Lett., 2011, 11(4): 1810−1813
12   R. A. Tufa, Potential of brackish water and brine for energy generation by salinity gradient power-reverse electrodialysis (SGP-RE). RSC Adv., 2014, 4(80): 42617−42623
13   B. B. Sales, O. S. Burheim, S. Porada, V. Presser, C. J. N. Buisman, H. V. M. Hamelers. Extraction of energy from small thermal differences near room temperature using capacitive membrane technology. Environ. Sci. Technol. Lett., 2014, 1(9): 356−360
14   S. Ahualli, M. M. Fernández, G. Iglesias, Á. Delgado, M. L. Jiménez. Temperature effects on energy production by salinity exchange. Environ. Sci. Technol., 2014, 48(20): 12378−12385
15   H. V. M. Hamelers, O. Schaetzle, J. M. Paz-García, P. M. Biesheuvel, C. J. N. Buisman. Harvesting energy from CO2 emissions. Environ. Sci. Technol. Lett., 2014, 1(1): 31−35
[1] Holger Krueger. Standardization for Additive Manufacturing in Aerospace[J]. Engineering, 2017, 3(5): 585 .
[2] Joe A. Sestak Jr.. High School Students from 157 Countries Convene to Address One of the 14 Grand Challenges for Engineering: Access to Clean Water[J]. Engineering, 2017, 3(5): 583 -584 .
[3] Lance A. Davis. Climate Agreement—Revisited[J]. Engineering, 2017, 3(5): 578 -579 .
[4] Ben A. Wender, M. Granger Morgan, K. John Holmes. Enhancing the Resilience of Electricity Systems[J]. Engineering, 2017, 3(5): 580 -582 .
[5] Jin-Xun Liu, Peng Wang, Wayne Xu, Emiel J. M. Hensen. Particle Size and Crystal Phase Effects in Fischer-Tropsch Catalysts[J]. Engineering, 2017, 3(4): 467 -476 .
[6] Luis Ribeiro e Sousa, Tiago Miranda, Rita Leal e Sousa, Joaquim Tinoco. The Use of Data Mining Techniques in Rockburst Risk Assessment[J]. Engineering, 2017, 3(4): 552 -558 .
[7] Maggie Bartolomeo. Third Global Grand Challenges Summit for Engineering[J]. Engineering, 2017, 3(4): 434 -435 .
[8] Michael Powalla, Stefan Paetel, Dimitrios Hariskos, Roland Wuerz, Friedrich Kessler, Peter Lechner, Wiltraud Wischmann, Theresa Magorian Friedlmeier. Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2[J]. Engineering, 2017, 3(4): 445 -451 .
[9] Raffaella Ocone. Reconciling “Micro” and “Macro” through Meso-Science[J]. Engineering, 2017, 3(3): 281 -282 .
[10] Baoning Zong, Bin Sun, Shibiao Cheng, Xuhong Mu, Keyong Yang, Junqi Zhao, Xiaoxin Zhang, Wei Wu. Green Production Technology of the Monomer of Nylon-6: Caprolactam[J]. Engineering, 2017, 3(3): 379 -384 .
[11] Pengcheng Xu, Yong Jin, Yi Cheng. Thermodynamic Analysis of the Gasification of Municipal Solid Waste[J]. Engineering, 2017, 3(3): 416 -422 .
[12] Lei Xu, Jinhui Peng, Hailong Bai, C. Srinivasakannan, Libo Zhang, Qingtian Wu, Zhaohui Han, Shenghui Guo, Shaohua Ju, Li Yang. Application of Microwave Melting for the Recovery of Tin Powder[J]. Engineering, 2017, 3(3): 423 -427 .
[13] Ee Teng Kho, Salina Jantarang, Zhaoke Zheng, Jason Scott, Rose Amal. Harnessing the Beneficial Attributes of Ceria and Titania in a Mixed-Oxide Support for Nickel-Catalyzed Photothermal CO2 Methanation[J]. Engineering, 2017, 3(3): 393 -401 .
[14] Ke Dang, Tuo Wang, Chengcheng Li, Jijie Zhang, Shanshan Liu, Jinlong Gong. Improved Oxygen Evolution Kinetics and Surface States Passivation of Ni-Bi Co-Catalyst for a Hematite Photoanode[J]. Engineering, 2017, 3(3): 285 -289 .
[15] Mu Xiao, Songcan Wang, Supphasin Thaweesak, Bin Luo, Lianzhou Wang. Tantalum (Oxy)Nitride: Narrow Bandgap Photocatalysts for Solar Hydrogen Generation[J]. Engineering, 2017, 3(3): 365 -378 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
Today's visits ;Accumulated visits . 京ICP备11030251号-2