Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2015, Vol. 1 Issue (2) : 192 -210
Research |
Recent Developments in Functional Crystals in China
Jiyang Wang1,(),Haohai Yu1,Yicheng Wu2,Robert Boughton3
1. State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
2. Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100080, China
3. Department of Physics and Astronomy, Bowling Green State University, Bowling Green, OH 43403-0001, USA

Functional crystals are the basic materials for the development of modern science and technology and are playing key roles in the modern information era. In this paper, we review functional crystals in China, including research history, significant achievements, and important applications by highlighting the most recent progress in research. Challenges for the development of functional materials are discussed and possible directions for development are proposed by focusing on potential strengths of these materials.

Keywords functional materials      laser crystals      nonlinear optical crystals      scintillation crystals      relaxor ferroelectric crystals      semiconductors     
Corresponding Authors: Jiyang Wang   
Just Accepted Date: 30 June 2015   Issue Date: 16 September 2015
E-mail this article
E-mail Alert
Articles by authors
Jiyang Wang
Haohai Yu
Yicheng Wu
Robert Boughton
Cite this article:   
Jiyang Wang,Haohai Yu,Yicheng Wu, et al. Recent Developments in Functional Crystals in China[J]. Engineering, 2015, 1(2): 192 -210 .
URL:     OR
1   T. H. Maiman. Stimulated optical radiation in ruby. Nature, 1960, 187(4736): 493−494
2   W. Koechner. Solid-State Lasers Engineering. W. Sun, Z. W. Jiang, G. X. Cheng, trans. Beijing: Science Press, 2002 (in Chinese)
3   J. E. Geusic, H. M. Marcos, L. G. Van Uitert. Laser oscillations in Nd-doped yttrium aluminum, yttrium gallium and gadolinium garnets. Appl. Phys. Lett., 1964, 4(10): 182−184
4   A. Kruusing. Underwater and water-assisted laser processing: Part 2—Etching, cutting and rarely used methods. Opt. Lasers Eng., 2004, 41(2): 329−352
5   B. Jiang, Z. Zhao, G. Zhao, J. Xu. Thin disk solid state lasers and heat capacity solid state lasers. Laser & Optoelectronics Progress, 2006, 43(3): 3−8 (in Chinese)
6   A. Heller. Efficiently changing the color of laser light. S&TR, 2006-<month>10</month>-<day>19</day>.
7   H. Yin, P. Deng, F. Gan. Defects in YAG:Yb crystals. J. Appl. Phys., 1998, 83(7): 3825−3828
8   J. Dong, A. Shirakawa, K. Ueda, J. Xu, P. Deng. Efficient laser oscillation of Yb:Y3Al5O12 single crystal grown by temperature gradient technique. Appl. Phys. Lett., 2006, 88(16): 161115
9   Y. H. Peng, Y. X. Lim, J. Cheng, Y. Guo, Y. Y. Cheah, K. S. Lai. Near fundamental mode 1.1 kW Yb:YAG thin-disk laser. Opt. Lett., 2013, 38(10): 1709−1711
10   J. Brons, Energy scaling of Kerr-lens mode-locked thin-disk oscillators. Opt. Lett., 2014, 39(22): 6442−6445.
11   X. Liang, Parasitic lasing suppression in high gain femtosecond petawatt Ti:sapphire amplifier. Opt. Express, 2007, 15(23): 15335−15341
12   V. Yanovsky, Ultra-high intensity-300-TW laser at 0.1 Hz repetition rate. Opt. Express, 2008, 16(3): 2109−2114
13   Z. Wang, C. Liu, Z. Shen, Q. Zhang, H. Teng, Z. Wei. High-contrast 1.16 PW Ti:sapphire laser system combined with a doubled chirped-pulse amplification scheme and a femtosecond optical-parametric amplifier. Opt. Lett., 2011, 36(16): 3194−3196
14   T. J. Yu, S. K. Lee, J. H. Sung, J. W. Yoon, T. M. Jeong, J. Lee. Generation of high-contrast, 30 fs, 1.5 PW laser pulses from chirped-pulse amplification Ti:sapphire laser. Opt. Express, 2012, 20(10): 10807−10815
15   Y. Chu, High-contrast 2.0 Petawatt Ti:sapphire laser system. Opt. Express, 2013, 21(24): 29231−29239
16   V. Chvykov, K. Krushelnick. Large aperture multi-pass amplifiers for high peak power lasers. Opt. Commun., 2012, 285(8): 2134−2136
17   H. Kiriyama, Temporal contrast enhancement of petawatt-class laser pulses. Opt. Lett., 2012, 37(16): 3363−3365
18   D. B. Joyce, F. Schmid. Progress in the growth of large scale Ti:sapphire crystals by the heat exchanger method (HEM) for petawatt class lasers. J. Cryst. Growth, 2010, 312(8): 1138−1141
19   A. Nehari, Ti-doped sapphire (Al2O3) single crystals grown by the Kyropoulos technique and optical characterizations. Cryst. Growth Des., 2011, 11(2): 445−448
20   S. F. Shao, Research progress in numerical simulation for crystal growth by czochralski method. J. Synth. Cryst., 2005, 34(4): 687−692 (in Chinese)
21   R. Peters, C. Kränkel, K. Petermann, G. Huber. Broadly tunable high-power Yb:Lu2O3 thin disk laser with 80% slope efficiency. Opt. Express, 2007, 15(11): 7075−7082
22   N. S. Prasad, Recent progress in the development of neodymium-doped ceramic yttria. IEEE J. Sel. Top. Quant., 2007, 13(3): 831−837
23   G. Boulon, Search of optimized trivalent ytterbium doped-inorganic crystals for laser applications. J. Alloy. Compd., 2002, 341(1−2): 2−7
24   R. H. Hoskins, B. H. Soffer. Stimulated emission from Y2O3:Nd3+. Appl. Phys. Lett., 1964, 4(1): 22−23
25   L. Fornasiero, E. Mix, V. Peters, E. Heumann, K. Petermann, G. Huber. Efficient laser operation of Nd:Sc2O3 at 966 nm, 1082 nm and 1486 nm. In: OSA Trends in Optics and Photonics Vol.26 Advanced Solid-State lasers (Optical Society of America, 1999). Boston, MA, US, 1999: 249−251
26   L. Fornasiero, E. Mix, V. Peters, K. Petermann, G. Huber. New oxide crystals for solid state lasers. Cryst. Res. Technol., 1999, 34(2): 255−260
27   K. Petermann, Highly Yb-doped oxides for thin-disc lasers. J. Cryst. Growth, 2005, 275(1−2): 135−140
28   P. Klopp, V. Petrov, U. Griebner, K. Petermann, V. Peters, G. Erbert. Highly efficient mode-locked Yb:Sc2O3 laser. Opt. Lett., 2004, 29(4): 391−393
29   C. R. E. Baer, Femtosecond Yb:Lu2O3 thin disk laser with 63 W of average power. Opt. Lett., 2009, 34(18): 2823−2825
30   C. R. E. Baer, Femtosecond thin-disk laser with 141 W of average power. Opt. Lett., 2010, 35(13): 2302−2304
31   L. Hao, Spectroscopy and laser performance of Nd:Lu2O3 crystal. Opt. Express, 2011, 19(18): 17774−17779
32   J. R. O’Conner. Unusual crystal-field energy levels and efficient laser properties of YVO4:Nd. Appl. Phys. Lett., 1966, 9(11): 407−409
33   P. A. Studenikin, A. I. Zagumennyi, Y. D. Zavartsev, P. A. Popov, I. A. Shcherbakov. GdVO4 as a new medium for solid-state lasers: Some optical and thermal properties of crystals doped with Cd3+, Tm3+, and Er3+ ions. Quantum Electron., 1995, 25(12): 1162−1165
34   C. Maunier, J. L. Doualan, R. Moncorgé, A. Speghini, M. Bettinelli, E. Cavalli. Growth, spectroscopic characterization, and laser performance of Nd:LuVO4, a new infrared laser material that is suitable for diode pumping. J. Opt. Soc. Am. B, 2002, 19(8): 1794−1800
35   B. Yao, Crystal growth and laser performance of neodymium-doped scandium orthovanadate. J. Cryst. Growth, 2010, 312(5): 720−723
36   J. Liu, Pulse energy enhancement in passive Q-switching operation with a class of Nd:GdxY1–xVO4 crystals. Appl. Phys. Lett., 2003, 83(7): 1289−1291
37   H. Yu, Enhancement of passive Q-switching performance with mixed Nd:LuxGd1–xVO4 laser crystals. Opt. Lett., 2007, 32(15): 2152−2154
38   P. P. Yaney, L. G. DeShazer. Spectroscopic studies and analysis of the laser states of Nd3+ in YVO4. J. Opt. Soc. Am., 1976, 66(12): 1405−1414
39   W. Li, E. Shi, W. Zhong, Z. Yin. Anion coordination polyhedron growth unit theory mode and crystal morphology. J. Synth. Cryst., 1999, 28(2): 117−125 (in Chinese)
40   M. Wei, G. Li, Y. Zhu, X. Wu, Z. Yu, S. Teng. Raw material synthesis of yttrium vanadate crystals (Nd3+:YVO4:YVO4). J. Synth. Cryst., 1998, 27(2): 178−181 (in Chinese)
41   X. Meng, L. Zhu, H. Zhang, C. Wang, Y. T. Chow, M. Lu. Growth, morphology and laser performance of Nd:YVO4 crystal. J. Cryst. Growth, 1999, 200(1−2): 199−203
42   P. Shi, D. Li, H. Zhang, Y. Wang, K. Du. An 110 W Nd:YVO4 slab laser with high beam quality output. Opt. Commun., 2004, 229(1−6): 349−354
43   L. Cui, 880 nm laser-diode end-pumped Nd:YVO4 slab laser at 1342 nm. Laser Phys., 2011, 21(1): 105−107
44   J. J. Zayhowski, C. Dill Iii. Coupled-cavity electro-optically Q-switched Nd:YVO4 microchip lasers. Opt. Lett., 1995, 20(7): 716−718
45   D. Nodop, J. Limpert, R. Hohmuth, W. Richter, M. Guina, A. Tünnermann. High-pulse-energy passively Q-switched quasi-monolithic microchip lasers operating in the sub-100-ps pulse regime. Opt. Lett., 2007, 32(15): 2115−2117
46   H. Lin, J. Li, X. Liang. 105 W,<10 ps, TEM00 laser output based on an in-band pumped Nd:YVO4 Innoslab amplifier. Opt. Lett., 2012, 37(13): 2634−2636
47   H. Zhang, Growth of new laser crystal Nd:LuVO4 by the Czochralski method. J. Cryst. Growth, 2003, 256(3−4): 292−297
48   J. Liu, Continuous-wave and pulsed laser performance of Nd:LuVO4 crystal. Opt. Lett., 2004, 29(2): 168−170
49   W. K. Jang, Q. Ye, J. Eichenholz, M. C. Richardson, B. H. T. Chai. Second harmonic generation in Yb doped YCa4O(BO3)3. Opt. Commun., 1998, 155(4−6): 332−334
50   D. Vivien, F. Mongel, G. Aka, A. Kahn-Harari, D. Pelenc. Neodymium-activated Ca4GdB3O10 (Nd:GdCOB): A multifunctional material exhibiting both laser and nonlinear optical properties. Laser Phys., 1998, 8(3): 759−763
51   Q. Ye, B. H. T. Chai. Crystal growth of YCa4O(BO3)3 and its orientation. J. Cryst. Growth, 1999, 197(1−2): 228−235
52   Z. Wang, K. Fu, X. Xu, X. Sun, H. Jiang, R. Song, J. Liu, J. Wang, Y. Liu, J. Wei, Z. Shao. The optimum configuration for the third-harmonic generation of 1.064 μm in a YCOB crystal. Appl. Phys. B, 2001, 72(7): 839−842
53   P. Yuan, G. Xie, D. Zhang, H. Zhong, L. Qian. High-contrast near-IR short pulses generated by a mid-IR optical parametric chirped-pulse amplifier with frequency doubling. Opt. Lett., 2010, 35 (11): 1878−1880
54   G. Aka, Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3. J. Opt. Soc. Am. B, 1997, 14(9): 2238−2247
55   O. H. Heckl, Continuous-wave and modelocked Yb:YCOB thin disk laser: First demonstration and future prospects. Opt. Express, 2010, 18(18): 19201−19208
56   A. Yoshida, Diode-pumped mode-locked Yb:YCOB laser generating 35 fs pulses. Opt. Lett., 2011, 36(22): 4425−4427
57   J. Y. Wang, H. H. Yu, H. J. Zhang, J. Li, N. Zong, Z. Y. Xu. Progress on the research and potential applications of self-frequency doubling crystals. Progress in Phys., 2011, 31(2): 91−110 (in Chinese)
58   H. Yu, Efficient high-power self-frequency-doubling Nd:GdCOB laser at 545 and 530 nm. Opt. Lett., 2011, 36(19): 3852−3854
59   T. Hahn. The International Tables for Crystallography. Myrtle Beach, SC: Springer Press, 1983
60   G. Zhang, G. Lan, Y. Wang. Lattice Vibrational Spectroscopy. Beijing: Higher Education Press, 2001 (in Chinese)
61   Z. Hu, Y. Zhao. A method and its apparatus for the large size nonlinear optical crystal growth by combination of crucible and seed crystal: CN, 101503819. 2009-<month>08</month>-<day>12</day> (in Chinese)
62   C. Chen, B. Wu, A. Jiang, G. You. A new type of ultraviolet SHG crystsl—β-BaB2O4. Sci. Sin. Ser. B, 1985, 28(4): 235−243
63   D. N. Nikogosyan. Beta barium borate (BBO). Appl. Phys. A-Mater, 1991, 52(6): 359−368
64   D. Perlov, S. Livneh, P. Czechowicz, A. Goldgirsh, D. Loiacono. Progress in growth of large β-BaB2O4 single crystals. Cryst. Res. Technol., 2011, 46(7): 651−654
65   N. Ye, D. Tang. Hydrothermal growth of KBe2BO3F2 crystals. J. Cryst. Growth, 2006, 293(2): 233−235
66   C. T. Chen. Recent advances in deep and vacuum-UV harmonic generation with KBBF crystal. Opt. Mater., 2004: 26(4), 425−429
67   G. Wang, 12.95 mW sixth harmonic generation with KBe2BO3F2 crystal. Appl. Phys. B-Lasers. O., 2008, 91(1): 95−97
68   C. T. Chen, G. L. Wang, X. Y. Wang, Z. Y. Xu. Deep-UV nonlinear optical crystal KBe2BO3F2—Discovery, growth, optical properties and applications. Appl. Phys. B-Lasers. O., 2009, 97(1): 9−25
69   T. Kanai, X. Wang, S. Adachi, S. Watanabe, C. Chen. Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device. Opt Express, 2009, 17(10): 8696−8703
70   G. Liu, Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1 meV. Rev. Sci. Instrum., 2008, 79(2): 023105
71   X. Wen. Theoretical and Experimental Study of Electrically Driven Traveling-Wave Thermoacoustic Refrigerator in Room Temperature Range. Beijing: Technical Institute of Physics and Chemistry, CAS, 2006 (in Chinese)
72   C. Chen, Deep UV nonlinear optical crystal: RbBe2(BO3)F2. J. Opt. Soc. Am. B, 2009, 26(8): 1519−1525
73   H. Dai, C. Chen. Realization methods of laser jamming in helicopter with mid-infrared lasers. Jour. Sichuan Ordnance, 2011, 32(1): 114−116 (in Chinese)
74   D. Sandy. Electronic Warfare Handbook 2008. Berkshire: The Shephard Press Ltd., 2008
75   G. A. Verozubova, A. I. Gribenyukov, Y. P. Mironov. Two-temperature synthesis of ZnGeP2. Inorg. Mater., 2007, 43(10): 1040−1045
76   K. T. Zawilski, P. G. Schunemann, S. D. Setzler, T. M. Pollak. Large aperture single crystal ZnGeP2 for high-energy applications. J. Cryst. Growth, 2008, 310(7−9): 1891−1896
77   G. A. Verozubova, A. I. Gribenyukov. Growth of ZnGeP2 crystals from melt. Crystallogr. Rep., 2008, 53(1): 158−163
78   Z. Lei, C. Zhu, C. Xu, B. Yao, C. Yang. Growth of crack-free ZnGeP2 large single crystals for high-power mid-infrared OPO applications. J. Cryst. Growth, 2014, 389: 23−29
79   S. Wang, Crystal growth and piezoelectric, elastic and dielectric properties of novel LiInS2 crystal. J. Cryst. Growth, 2013, 362: 308−311
80   Q. Yu, Z. Gao, S. Zhang, W. Zhang, S. Wang, X. Tao. Second order nonlinear properties of monoclinic single crystal BaTeMo2O9. J. Appl. Phys., 2012, 111(1): 013506
81   J. Cheng, Synthesis and growth of ZnGeP2 crystals: Prevention of non-stoichiometry. J. Cryst. Growth, 2013, 362: 125−129
82   Y. Li, Z. Wu, X. Zhang, L. Wang, J. Zhang, Y. Wu. Crystal growth and terahertz wave generation of organic NLO crystals: OH1. J. Cryst. Growth, 2014, 402: 53−59
83   Y. Li, J. Zhang, G. Zhang, L. Wu, P. Fu, Y. Wu. Growth and characterization of DSTMS crystals. J. Cryst. Growth, 2011, 327(1): 127−132
84   X. Lin, G. Zhang, N. Ye. Growth and characterization of BaGa4S7: A new crystal for mid-IR nonlinear optics. Cryst. Growth Des., 2009, 9(2): 1186−1189
85   J. Yao, BaGa4Se7: A new congruent-melting IR nonlinear optical material. Inorg. Chem., 2010, 49(20): 9212−9216
86   C. Stolzenburg, W. Schüle, I. Zawischa, A. Killi, D. Sutter. 700 W intracavity-frequency doubled Yb:YAG thin-disk laser at 100 kHz repetition rate. In: W. A. Clarkson, N. Hodgson, R. K. Shori, eds. Proceedings of SPIE 7578, Solid State Lasers XIX: Technology and Devices. San Francisco, CA, USA, 2010: 75780A
87   G. D. Goodno, Investigation of β-BaB2O4 as a Q switch for high power applications. Appl. Phys. Lett., 1995, 66(13): 1575−1577
88   C. Stolzenburg, A. Giesen, F. Butze, P. Heist, G. Hollemann. Cavity-dumped intracavity-frequency-doubled Yb:YAG thin disk laser with 100?W average power. Opt. Lett., 2007, 32(9): 1123−1125
89   M. Roth, N. Angert, M. Tseitlin. Growth-dependent properties of KTP crystals and PPKTP structures. J. Mater. Sci-Mater. El., 2001, 12(8): 429−436
90   M. Roth, M. Tseitlin, N. Angert. Oxide crystals for electro-optic Q-switching of lasers. Glass Phys. Chem., 2005, 31(1): 86−95
91   Yu. V. Shaldin, S. Matyjasik, M. Tseitlin, M. Roth. Specific features of the pyroelectric properties of actual RbTiOPO4 single crystals in the temperature range 4.2−300 K. Phys. Solid State, 2008, 50(7): 1315−1312
92   M. Roth, M. Tseitlin. Growth of large size high optical quality KTP-type crystals. J. Cryst. Growth, 2010, 312(8): 1059−1064
93   J. Y. Wang, Progress of the electro-optic crystal research and the symmetry dependence of electro-optic effect. Progress in Phys., 2012, 32(1): 33−56 (in Chinese)
94   L. Wang, X. Cai, J. Yang, X. Wu, H. Jiang, J. Wang. 520 mJ langasite electro-optically Q-switched Cr, Tm, Ho:YAG laser. Opt. Lett., 2012, 37(11): 1986−1988
95   L. Wang, 2.79 m high peak power LGS electro-optically Q-switched Cr, Er:YSGG laser. Opt. Lett., 2013, 38(12): 2150−2152
96   M. Kiefer, F. Pröbst, G. Angloher, I. Bavykina, D. Hauff, W. Seidel. Glued CaWO4 detectors for the CRESST-II experiment. Opt. Mater., 2009, 31(10): 1410−1414
97   H. Kraus, ZnWO4 scintillators for cryogenic dark matter experiments. Nucl. Instrum. Meth. A, 2009, 600(3): 594−598
98   J. Chen, G. Zhao, D. Cao, S. Zhou. Color center of YAlO3 with cation vacancies. Curr. Appl. Phys., 2010, 10(2): 468−470
99   Q. Gui, C. Zhang, M. Zhang, L. Hang, Z. Fang, Y. Ge. Study on crystal growth and scintillation properties of large-size CeCl3 doped LaBr3 crystal. Nuclear Electronics & Detection Technology, 2011, 31(11): 1195−1197, 1249 (in Chinese)
100   Y. Zhang, M. Luo. Study on temperature characteristics of LaBr3 detector. Nuclear Electronics & Detection Technology, 2013, 33(2): 188−190 (in Chinese)
101   Z. Ye. Relaxor ferroelectric Pb(Mg1/3Nb2/3)O3: Properties and present understanding. Ferroelectrics, 1996, 184(1): 193−208
102   D. Viehland. Symmetry-adaptive ferroelectric mesostates in oriented Pb(BI1/3BII2/3)O3-PbTiO3 crystals. J. Appl. Phys., 2000, 88(8): 4794−4806
103   G. A. Smolensky. Physical phenomena in ferroelectrics with diffused phase transition. J. Phys. Soc. Jpn, 1970, 28(Suppl.): 26−37
104   S. E. Park, T. R. Shrout. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys., 1997, 82(4): 1804−1811
105   K. Saitoh, Y. Ishimaru, H. Fuke, Y. Enomoto. A model analysis for current-voltage characteristics of superconducting weak links. Jpn. J. Appl. Phys., 1997, 36(Part 2, No. 3A): L272−L275
106   L. Liu, Dielectric, ferroelectric, and pyroelectric characterization of Mn-doped 0.74Pb(Mg1/3Nb2/3)O3–0.26PbTiO3 crystals for infrared detection applications. Appl. Phys. Lett., 2009, 95(19): 192903
107   A. Borisevich, Lead tungstate scintillation crystal with increased light yield for the PANDA electromagnetic calorimeter. Nucl. Instrum. Meth. A, 2005, 537(1−2): 101−104
108   S. Saitoh, M. Izumi, Y. Yamashita, S. Shimanuki, M. Kawachi, T. Kobayashi. Piezoelectric single crystal, ultrasonic probe, and array-type ultrasonic probe: US, 5402791A, 1995-<month>04</month>-<day>04</day>
109   B. Ren, S. W. Or, X. Zhao, H. Luo. Energy harvesting using a modified rectangular cymbal transducer based on 0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3 single crystal. J. Appl. Phys., 2010, 107(3): 034501
110   N. Neumann, M. Es-Souni, H. Luo. Application of pmN-PT in pyroelectric detectors. In: Proceedings of the 18th IEEE International Symposium on the Applications of Ferroelectrics. Xi’an, China, 2009: 1−3
111   Y. Wang, S. W. Or, H. L. W. Chan, X. Zhao, H. Luo. Magnetoelectric effect from mechanically mediated torsional magnetic force effect in NdFeB magnets and shear piezoelectric effect in 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 single crystal. Appl. Phys. Lett., 2008, 92(12): 123510
112   H. Luo, G. Xu, H. Xu, P. Wang, Z. Yin. Compositional homogeneity and electrical properties of lead magnesium niobate titanate single crystals grown by a modified bridgman technique. Jpn. J. Appl. Phys., 2000, 39(Part 1, No. 9B): 5581−5585
113   P. Yu, Growth and pyroelectric properties of high Curie temperature relaxor-based ferroelectric Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 ternary single crystal. Appl. Phys. Lett., 2008, 92(25): 252907
114   B. Gao, G. L. Yu, J. B. Li. Numerical simulation and experimental study on two-dimensional solid/fluid phononic crystals. J. Synth. Cryst., 2010, 39(3): 680−686
115   Y. Gao, Evolution and structure of low-angle grain boundaries in 6H-SiC single crystals grown by sublimation method. J. Cryst. Growth, 2010, 312(20): 2909−2913
[1] Zhuo Cheng, Lang Qin, Jonathan A. Fan, Liang-Shih Fan. New Insight into the Development of Oxygen Carrier Materials for Chemical Looping Systems[J]. Engineering, 2018, 4(3): 343 -351 .
[2] Jennifer A. Clark, Erik E. Santiso. Carbon Sequestration through CO2 Foam-Enhanced Oil Recovery: A Green Chemistry Perspective[J]. Engineering, 2018, 4(3): 336 -342 .
[3] Andrea Di Maria, Karel Van Acker. Turning Industrial Residues into Resources: An Environmental Impact Assessment of Goethite Valorization[J]. Engineering, 2018, 4(3): 421 -429 .
[4] Lance A. Davis. Falcon Heavy[J]. Engineering, 2018, 4(3): 300 .
[5] Augusta Maria Paci. A Research and Innovation Policy for Sustainable S&T: A Comment on the Essay ‘‘Exploring the Logic and Landscape of the Knowledge System”[J]. Engineering, 2018, 4(3): 306 -308 .
[6] Ning Duan. When Will Speed of Progress in Green Science and Technology Exceed that of Resource Exploitation and Pollutant Generation?[J]. Engineering, 2018, 4(3): 299 .
[7] Jian-guo Li, Kai Zhan. Intelligent Mining Technology for an Underground Metal Mine Based on Unmanned Equipment[J]. Engineering, 2018, 4(3): 381 -391 .
[8] Veena Sahajwalla. Green Processes: Transforming Waste into Valuable Resources[J]. Engineering, 2018, 4(3): 309 -310 .
[9] Junye Wang, Hualin Wang, Yi Fan. Techno-Economic Challenges of Fuel Cell Commercialization[J]. Engineering, 2018, 4(3): 352 -360 .
[10] Raymond RedCorn, Samira Fatemi, Abigail S. Engelberth. Comparing End-Use Potential for Industrial Food-Waste Sources[J]. Engineering, 2018, 4(3): 371 -380 .
[11] Ning Duan, Linhua Jiang, Fuyuan Xu, Ge Zhang. A Non-Contact Original-State Online Real-Time Monitoring Method for Complex Liquids in Industrial Processes[J]. Engineering, 2018, 4(3): 392 -397 .
[12] Keith E. Gubbins, Kai Gu, Liangliang Huang, Yun Long, J. Matthew Mansell, Erik E. Santiso, Kaihang Shi, Małgorzata Ś liwińska-Bartkowiak, Deepti Srivastava. Surface-Driven High-Pressure Processing[J]. Engineering, 2018, 4(3): 311 -320 .
[13] Steff Van Loy, Koen Binnemans, Tom Van Gerven. Mechanochemical-Assisted Leaching of Lamp Phosphors: A Green Engineering Approach for Rare-Earth Recovery[J]. Engineering, 2018, 4(3): 398 -405 .
[14] Robert S. Weber, Johnathan E. Holladay. Modularized Production of Value-Added Products and Fuels from Distributed Waste Carbon-Rich Feedstocks[J]. Engineering, 2018, 4(3): 330 -335 .
[15] Hualin Wang, Pengbo Fu, Jianping Li, Yuan Huang, Ying Zhao, Lai Jiang, Xiangchen Fang, Tao Yang, Zhaohui Huang, Cheng Huang. Separation-and-Recovery Technology for Organic Waste Liquid with a High Concentration of Inorganic Particles[J]. Engineering, 2018, 4(3): 406 -415 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.