Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2015, Vol. 1 Issue (2) : 247 -260
Research |
CPS Modeling of CNC Machine Tool Work Processes Using an Instruction-Domain Based Approach
Jihong Chen,Jianzhong Yang(),Huicheng Zhou,Hua Xiang,Zhihong Zhu,Yesong Li,Chen-Han Lee,Guangda Xu
National Numerical Control System Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China

Building cyber-physical system (CPS) models of machine tools is a key technology for intelligent manufacturing. The massive electronic data from a computer numerical control (CNC) system during the work processes of a CNC machine tool is the main source of the big data on which a CPS model is established. In this work-process model, a method based on instruction domain is applied to analyze the electronic big data, and a quantitative description of the numerical control (NC) processes is built according to the G code of the processes. Utilizing the instruction domain, a work-process CPS model is established on the basis of the accurate, real-time mapping of the manufacturing tasks, resources, and status of the CNC machine tool. Using such models, case studies are conducted on intelligent-machining applications, such as the optimization of NC processing parameters and the health assurance of CNC machine tools.

Keywords cyber-physical system (CPS)      big data      computer numerical control (CNC) machine tool      electronic data of work processes      instruction domain      intelligent machining     
Corresponding Authors: Jianzhong Yang   
Just Accepted Date: 30 June 2015   Issue Date: 16 September 2015
E-mail this article
E-mail Alert
Articles by authors
Jihong Chen
Jianzhong Yang
Huicheng Zhou
Hua Xiang
Zhihong Zhu
Yesong Li
Chen-Han Lee
Guangda Xu
Cite this article:   
Jihong Chen,Jianzhong Yang,Huicheng Zhou, et al. CPS Modeling of CNC Machine Tool Work Processes Using an Instruction-Domain Based Approach[J]. Engineering, 2015, 1(2): 247 -260 .
URL:     OR
1   H. Kagermann, Recommendations for<?Pub Caret?> implementing the strategic initiative Industrie 4.0: Final report of the Industrie 4.0 Working Group. 2013
2   J. C. Jensen, D. H. Chang, E. A. Lee. A model-based design methodology for cyber-physical systems. In: Proceedings of the 7th International Wireless Communications and Mobile Computing Conference (IWCMC). New York: IEEE, 2011: 1666−1671
3   P. Derler, E. A. Lee, A. S. Vincentelli. Modeling cyber-physical systems. Proc. IEEE, 2012, 100(1): 13−28
4   Y. Wu, L. Chen. Simulation Optimization Method for Multi-domain Physical Systems. Beijing: Science Press, 2011 (in Chinese)
5   A. Vijayaraghavan, W. Sobel, A. Fox, D. Dornfeld, P. Warndorf. Improving machine tool interoperability using standardized interface protocols: MTConnectTM. In: Proceedings of 2008 International Symposium on Flexible Automation (ISFA). Atlanta, GA, USA, 2008: 23−26
6   A. Kao, J. Lee, R. Lapira, S. Yang, Y. Huang, N. Yen. iFactory cloud service platform based on IMS tools and Servo-lution. In: J. Lee, J. Ni, J. Sarangapani, J. Mathew, eds. Engineering Asset Management 2011: Proceedings of the Sixth World Congress on Engineering Asset Management. London: Springer, 2011: 699−709
7   L. H. Wang. Machine availability monitoring and machining process planning towards Cloud manufacturing. CIRP J. Manuf. Sci. Technol., 2013, 6(4): 263−273
8   J. Lee, B. Bagheri, H. A. Kao. A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 2015, 3: 18−23
9   J. Lee, E. Lapira, B. Bagheri, H. Kao. Recent advances and trends in predictive manufacturing systems in big data environment. Manufacturing Letters, 2013, 1(1): 38−41
10   J. Wan, M. Chen, F. Xia, L. Di, K. Zhou. From machine-to-machine communications towards cyber-physical systems. Comput. Sci. Inf. Syst., 2013, 10(3): 1105−1128
11   J. Lee, F. Wu, W. Zhao, M. Ghaffari, L. Liao, D. Siegel. Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications. Mech. Syst. Signal Pr., 2014, 42(1−2): 314−334
12   V. Plapper, M. Weck. Sensorless machine tool condition monitoring based on open NCs. In: Proceedings of the 2001 IEEE International Conference on Robotics & Automation. New York: IEEE, 2001: 3104−3108
13   J. F. G. Oliveira, F. Ferraz Júnior, R. T. Coelho, E. J. Silva. Architecture for machining process and production monitoring based in open computer numerical control. Proc. Inst. Mech. Eng., B J. Eng. Manuf., 2008, 222(12): 1605−1612
[1] Bowen Du, Yanliang Du, Fei Xu, Peng He. Conception and Exploration of Using Data as a Service in Tunnel Construction with the NATM[J]. Engineering, 2018, 4(1): 123 -130 .
[2] Jian Xu, Bo Ma, Xiaoquan Su, Shi Huang, Xin Xu, Xuedong Zhou, Wei Huang, Rob Knight. Emerging Trends for Microbiome Analysis: From Single-Cell Functional Imaging to Microbiome Big Data[J]. Engineering, 2017, 3(1): 66 -70 .
[3] Yunhe Pan. Heading toward Artificial Intelligence 2.0[J]. Engineering, 2016, 2(4): 409 -413 .
[4] Yunhe Pan, Yun Tian, Xiaolong Liu, Dedao Gu, Gang Hua. Urban Big Data and the Development of City Intelligence[J]. Engineering, 2016, 2(2): 171 -178 .
[5] Sonia Bergamaschi,Emanuele Carlini,Michelangelo Ceci,Barbara Furletti,Fosca Giannotti,Donato Malerba,Mario Mezzanzanica,Anna Monreale,Gabriella Pasi,Dino Pedreschi,Raffele Perego,Salvatore Ruggieri. Big Data Research in Italy: A Perspective[J]. Engineering, 2016, 2(2): 163 -170 .
[6] Eric P. Xing,Qirong Ho,Pengtao Xie,Dai Wei. Strategies and Principles of Distributed Machine Learning on Big Data[J]. Engineering, 2016, 2(2): 179 -195 .
[7] Daniel Richard Leff, Guang-Zhong Yang. Big Data for Precision Medicine[J]. Engineering, 2015, 1(3): 277 -279 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.