Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2015, Vol. 1 Issue (3) : 324 -335
Research |
Smartphone-Imaged HIV-1 Reverse-Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) on a Chip from Whole Blood
Gregory L. Damhorst1,2,Carlos Duarte-Guevara2,3,Weili Chen2,3,Tanmay Ghonge1,2,Brian T. Cunningham1,2,3,Rashid Bashir1,2,3,()
1. Department of Bioengineering, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
2. Micro and Nanotechnology Laboratory, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
3. Department of Electrical and Computer Engineering, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Viral load measurements are an essential tool for the long-term clinical care of human immunodeficiency virus (HIV)-positive individuals. The gold standards in viral load instrumentation, however, are still too limited by their size, cost, and sophisticated operation for these measurements to be ubiquitous in remote settings with poor healthcare infrastructure, including parts of the world that are disproportionately affected by HIV infection. The challenge of developing a point-of-care platform capable of making viral load more accessible has been frequently approached but no solution has yet emerged that meets the practical requirements of low cost, portability, and ease-of-use. In this paper, we perform reverse-transcription loop-mediated isothermal amplification (RT-LAMP) on minimally processed HIV-spiked whole blood samples with a microfluidic and silicon microchip platform, and perform fluorescence measurements with a consumer smartphone. Our integrated assay shows amplification from as few as three viruses in a ~ 60 nL RT-LAMP droplet, corresponding to a whole blood concentration of 670 viruses per μL of whole blood. The technology contains greater power in a digital RT-LAMP approach that could be scaled up for the determination of viral load from a finger prick of blood in the clinical care of HIV-positive individuals. We demonstrate that all aspects of this viral load approach, from a drop of blood to imaging the RT-LAMP reaction, are compatible with lab-on-a-chip components and mobile instrumentation.

Keywords human immunodeficiency virus (HIV)      viral load      loop-mediated isothermal amplification      smartphone      point-of-care     
Corresponding Authors: Rashid Bashir   
Just Accepted Date: 22 September 2015   Issue Date: 16 October 2015
E-mail this article
E-mail Alert
Articles by authors
Gregory L. Damhorst
Carlos Duarte-Guevara
Weili Chen
Tanmay Ghonge
Brian T. Cunningham
Rashid Bashir
Cite this article:   
Gregory L. Damhorst,Carlos Duarte-Guevara,Weili Chen, et al. Smartphone-Imaged HIV-1 Reverse-Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) on a Chip from Whole Blood[J]. Engineering, 2015, 1(3): 324 -335 .
URL:     OR
1   World Health Organization. HIV/AIDS fact sheet. 2014[2015-<month>08</month>-<day>01</day>].
2   World Health Organization, UNICEF, UNAIDS. Global Update on HIV Treatment 2013: Results, Impact and Opportunities. Geneva: WHO Press, 2013
3   J. A. Aberg, J. E. Gallant, K. G. Ghanem, P. Emmanuel, B. S. Zingman, M. A. Horberg; Infectious Diseases Society of America. Primary care guidelines for the management of persons infected with HIV: 2013 update by the HIV medicine association of the Infectious Diseases Society of America. Clin. Infect. Dis., 2014, 58(1): e1–e34
4   Alere. Alere PimaTM CD4. 2012[2015-<month>05</month>-<day>05</day>].
5   Daktari Diagnostics. Products. 2013[2015-<month>05</month>-<day>05</day>].
6   G. L. Damhorst, N. N. Watkins, R. Bashir. Micro- and nanotechnology for HIV/AIDS diagnostics in resource-limited settings. IEEE Trans. Biomed. Eng., 2013, 60(3): 715–726
7   C. F. Rowley. Developments in CD4 and viral load monitoring in resource-limited settings. Clin. Infect. Dis., 2014, 58(3): 407–412
8   US Food and Drug Administration. Complete list of donor screening assays for infectious agents and HIV diagnostic assays. 2013
9   US Food and Drug Administration. Vaccines, blood & biologics: HIV-1. 2010[2014-<month>03</month>-<day>17</day>].
10   T. Peterson, M. Stuart. HIV Testing Overview. 2011[2014-<month>03</month>-<day>17</day>].
11   X. Zhang, S. B. Lowe, J. J. Gooding. Brief review of monitoring methods for loop-mediated isothermal amplification (LAMP). Biosens. Bioelectron., 2014, 61: 491–499
12   T. Notomi, Loop-mediated isothermal amplification of DNA. Nucleic Acids Res., 2000, 28(12): e63
13   M. P. de Baar, E. C. Timmermans, M. Bakker, E. de Rooij, B. van Gemen, J. Goudsmit. One-tube real-time isothermal amplification assay to identify and distinguish human immunodeficiency virus type 1 subtypes A, B, and C and circulating recombinant forms AE and AG. J. Clin. Microbiol., 2001, 39(5): 1895–1902
14   M. P. de Baar, Single rapid real-time monitored isothermal RNA amplification assay for quantification of human immunodeficiency virus type 1 isolates from groups M, N, and O. J. Clin. Microbiol., 2001, 39(4): 1378–1384
15   K. A. Curtis, D. L. Rudolph, S. M. Owen. Rapid detection of HIV-1 by reverse-transcription, loop-mediated isothermal amplification (RT-LAMP). J. Virol. Methods, 2008, 151(2): 264–270
16   C. Liu, An isothermal amplification reactor with an integrated isolation membrane for point-of-care detection of infectious diseases. Analyst (Lond.), 2011, 136(10): 2069–2076
17   K. A. Curtis, Isothermal amplification using a chemical heating device for point-of-care detection of HIV-1. PLoS ONE, 2012, 7(2): e31432
18   K. A. Curtis, P. L. Niedzwiedz, A. S. Youngpairoj, D. L. Rudolph, S. M. Owen. Real-time detection of HIV-2 by reverse transcription-loop-mediated isothermal amplification. J. Clin. Microbiol., 2014, 52(7): 2674–2676
19   C. Liu, Membrane-based, sedimentation-assisted plasma separator for point-of-care applications. Anal. Chem., 2013, 85(21): 10463–10470
20   F. B. Myers, R. H. Henrikson, J. M. Bone, L. P. Lee. A handheld point-of-care genomic diagnostic system. PLoS ONE, 2013, 8(8): e70266
21   B. Sun, F. Shen, S. E. McCalla, J. E. Kreutz, M. A. Karymov, R. F. Ismagilov. Mechanistic evaluation of the pros and cons of digital RT-LAMP for HIV-1 viral load quantification on a microfluidic device and improved efficiency via a two-step digital protocol. Anal. Chem., 2013, 85(3): 1540–1546
22   N. N. Watkins, Microfluidic CD4+ and CD8+ T lymphocyte counters for point-of-care HIV diagnostics using whole blood. Sci. Transl. Med., 2013, 5(214): 214ra170
23   C. Duarte, E. Salm, B. Dorvel, B. Reddy Jr., R. Bashir. On-chip parallel detection of foodborne pathogens using loop-mediated isothermal amplification. Biomed. Microdevices, 2013, 15(5): 821–830
24   P. Khlebovich. IP Webcam. 2015
25   G. L. Damhorst, M. Murtagh, W. R. Rodriguez, R. Bashir. Microfluidics and nanotechnology for detection of global infectious diseases. P. IEEE, 2015, 103(2): 150–160
26   G. Jenkins, C. D. Mansfield. Microfluidic Diagnostics: Methods and Protocols. New York: Humana Press, 2013
27   C. D. Chin, V. Linder, S. K. Sia. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip, 2012, 12(12): 2118–2134
28   S. Y. Teh, R. Lin, L. H. Hung, A. P. Lee. Droplet microfluidics. Lab Chip, 2008, 8(2): 198–220
29   The World Bank. Mobile phone access reaches three quarters of planet’s population. 2012[2015-<month>05</month>-<day>22</day>].
30   A. S. F. Lok, B. J. McMahon. Chronic hepatitis B: Update 2009. Hepatology, 2009, 50(3): 661–662
31   M. Baker. Digital PCR hits its stride. Nat. Methods, 2012, 9(6): 541–544
32   Y. Chander, A novel thermostable polymerase for RNA and DNA loop-mediated isothermal amplification (LAMP). Front. Microbiol., 2014, 5: 395
33   C. C. Boehme, Operational feasibility of using loop-mediated isothermal amplification for diagnosis of pulmonary tuberculosis in microscopy centers of developing countries. J. Clin. Microbiol., 2007, 45(6): 1936–1940
34   A. C. Hatch, 1-Million droplet array with wide-field fluorescence imaging for digital PCR. Lab Chip, 2011, 11(22): 3838–3845
35   R. H. Sedlak, K. R. Jerome. Viral diagnostics in the era of digital polymerase chain reaction. Diagn. Microbiol. Infect. Dis., 2013, 75(1): 1–4
36   K. A. Heyries, Megapixel digital PCR. Nat. Methods, 2011, 8(8): 649–651
37   C. M. Hindson, Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat. Methods, 2013, 10(10): 1003–1005
38   R. A. White III, S. R. Quake, K. Curr. Digital PCR provides absolute quantitation of viral load for an occult RNA virus. J. Virol. Methods, 2012, 179(1): 45–50
39   F. Shen, W. Du, J. E. Kreutz, A. Fok, R. F. Ismagilov. Digital PCR on a SlipChip. Lab Chip, 2010, 10(20): 2666–2672
40   M. Pai, M. Ghiasi, N. P. Pai. Point-of-care diagnostic testing in global health: What is the point? Microbe, 2015, 10(3): 103–107
[1] Supplementary Material Download
[1] Zhuo Cheng, Lang Qin, Jonathan A. Fan, Liang-Shih Fan. New Insight into the Development of Oxygen Carrier Materials for Chemical Looping Systems[J]. Engineering, 2018, 4(3): 343 -351 .
[2] Jennifer A. Clark, Erik E. Santiso. Carbon Sequestration through CO2 Foam-Enhanced Oil Recovery: A Green Chemistry Perspective[J]. Engineering, 2018, 4(3): 336 -342 .
[3] Andrea Di Maria, Karel Van Acker. Turning Industrial Residues into Resources: An Environmental Impact Assessment of Goethite Valorization[J]. Engineering, 2018, 4(3): 421 -429 .
[4] Lance A. Davis. Falcon Heavy[J]. Engineering, 2018, 4(3): 300 .
[5] Augusta Maria Paci. A Research and Innovation Policy for Sustainable S&T: A Comment on the Essay ‘‘Exploring the Logic and Landscape of the Knowledge System”[J]. Engineering, 2018, 4(3): 306 -308 .
[6] Ning Duan. When Will Speed of Progress in Green Science and Technology Exceed that of Resource Exploitation and Pollutant Generation?[J]. Engineering, 2018, 4(3): 299 .
[7] Jian-guo Li, Kai Zhan. Intelligent Mining Technology for an Underground Metal Mine Based on Unmanned Equipment[J]. Engineering, 2018, 4(3): 381 -391 .
[8] Veena Sahajwalla. Green Processes: Transforming Waste into Valuable Resources[J]. Engineering, 2018, 4(3): 309 -310 .
[9] Junye Wang, Hualin Wang, Yi Fan. Techno-Economic Challenges of Fuel Cell Commercialization[J]. Engineering, 2018, 4(3): 352 -360 .
[10] Raymond RedCorn, Samira Fatemi, Abigail S. Engelberth. Comparing End-Use Potential for Industrial Food-Waste Sources[J]. Engineering, 2018, 4(3): 371 -380 .
[11] Ning Duan, Linhua Jiang, Fuyuan Xu, Ge Zhang. A Non-Contact Original-State Online Real-Time Monitoring Method for Complex Liquids in Industrial Processes[J]. Engineering, 2018, 4(3): 392 -397 .
[12] Keith E. Gubbins, Kai Gu, Liangliang Huang, Yun Long, J. Matthew Mansell, Erik E. Santiso, Kaihang Shi, Małgorzata Ś liwińska-Bartkowiak, Deepti Srivastava. Surface-Driven High-Pressure Processing[J]. Engineering, 2018, 4(3): 311 -320 .
[13] Steff Van Loy, Koen Binnemans, Tom Van Gerven. Mechanochemical-Assisted Leaching of Lamp Phosphors: A Green Engineering Approach for Rare-Earth Recovery[J]. Engineering, 2018, 4(3): 398 -405 .
[14] Robert S. Weber, Johnathan E. Holladay. Modularized Production of Value-Added Products and Fuels from Distributed Waste Carbon-Rich Feedstocks[J]. Engineering, 2018, 4(3): 330 -335 .
[15] Hualin Wang, Pengbo Fu, Jianping Li, Yuan Huang, Ying Zhao, Lai Jiang, Xiangchen Fang, Tao Yang, Zhaohui Huang, Cheng Huang. Separation-and-Recovery Technology for Organic Waste Liquid with a High Concentration of Inorganic Particles[J]. Engineering, 2018, 4(3): 406 -415 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.