Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2015, Vol. 1 Issue (4) : 453 -465
Research |
Combining Market-Based Control with Distribution Grid Constraints when Coordinating Electric Vehicle Charging
Geert Deconinck1,(),Klaas De Craemer2,Bert Claessens2
1. KU Leuven-EnergyVille, Leuven 3001, Belgium
2. VITO-EnergyVille, Mol 2400, Belgium

The charging of electric vehicles (EVs) impacts the distribution grid, and its cost depends on the price of electricity when charging. An aggregator that is responsible for a large fleet of EVs can use a market-based control algorithm to coordinate the charging of these vehicles, in order to minimize the costs. In such an optimization, the operational parameters of the distribution grid, to which the EVs are connected, are not considered. This can lead to violations of the technical constraints of the grid (e.g., under-voltage, phase unbalances); for example, because many vehicles start charging simultaneously when the price is low. An optimization that simultaneously takes the economic and technical aspects into account is complex, because it has to combine time-driven control at the market level with event-driven control at the operational level. Different case studies investigate under which circumstances the market-based control, which coordinates EV charging, conflicts with the operational constraints of the distribution grid. Especially in weak grids, phase unbalance and voltage issues arise with a high share of EVs. A low-level voltage droop controller at the charging point of the EV can be used to avoid many grid constraint violations, by reducing the charge power if the local voltage is too low. While this action implies a deviation from the cost-optimal operating point, it is shown that this has a very limited impact on the business case of an aggregator, and is able to comply with the technical distribution grid constraints, even in weak distribution grids with many EVs.

Keywords electric vehicle charging      distribution grid      combining technical and economic objectives      distributed control     
Corresponding Authors: Geert Deconinck   
Just Accepted Date: 23 December 2015   Issue Date: 04 January 2016
E-mail this article
E-mail Alert
Articles by authors
Geert Deconinck
Klaas De Craemer
Bert Claessens
Cite this article:   
Geert Deconinck,Klaas De Craemer,Bert Claessens. Combining Market-Based Control with Distribution Grid Constraints when Coordinating Electric Vehicle Charging[J]. Engineering, 2015, 1(4): 453 -465 .
URL:     OR
1   K. De Craemer, S. Vandael, B. Claessens, G. Deconinck. Integration of distribution grid constraints in an event-driven control strategy for plug-in electric vehicles in a multi-aggregator setting. In: S. Rajakaruna, F. Shahnia, A. Ghosh, eds. Plug in Electric Vehicles in Smart Grids: Energy Management. Singapore: Springer, 2015: 129–171
2   K. De Craemer, S. Vandael, B. Claessens, G. Deconinck. An event-driven dual coordination mechanism for demand side management of PHEVs. IEEE Trans. Smart Grid, 2014, 5(2): 751–760
3   S. Vandael, B. Claessens, M. Hommelberg, T. Holvoet, G. Deconinck. A scalable three-step approach for demand side management of plug-in hybrid vehicles. IEEE Trans. Smart Grid, 2013, 4(2): 720–728
4   Q. Huang, Q. S. Jia, Z. Qiu, X. Guan, G. Deconinck. Matching EV charging load with uncertain wind: A simulation-based policy improvement approach. IEEE Trans. Smart Grid, 2015, 6(3): 1425–1433
5   R. J. Bessa, M. A. Matos. Economic and technical management of an aggregation agent for electric vehicles: A literature survey. Eur. Trans. Electr. Power, 2012, 22(3): 334–350
6   K. Clement-Nyns, E. Haesen, J. Driesen. The impact of charging plug-in hybrid electric vehicles on a residential distribution grid. IEEE Trans. Power Syst., 2010, 25(1): 371–380
7   S. Shao, M. Pipattanasomporn, S. Rahman. Grid integration of electric vehicles and demand response with customer choice. IEEE Trans. Smart Grid, 2012, 3(1): 543–550
8   F. Geth, N. Leemput, J. Van Roy, J. Buscher, R. Ponnette, J. Driesen. Voltage droop charging of electric vehicles in a residential distribution feeder. In: Proceedings of 2012 3rd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies (ISGT Europe). Berlin, Germany, 2012: 1–8
9   E. Sortomme, M. M. Hindi, S. D. J. MacPherson, S. S. Venkata. Coordinated charging of plug-in hybrid electric vehicles to minimize distribution system losses. IEEE Trans. Smart Grid, 2011, 2(1): 198–205
10   A. F. Ali, M. Abdel-Akher, Z. Ziadi, T. Senjyu. Coordinated charging of plug-in hybrid electric vehicle for voltage profile enhancement of distribution systems. In: Proceedings of the IEEE 10th International Conference on Power Electronics and Drive Systems (PEDS). Kitakyushu, Japan, 2013: 399–404
11   J. Xu, V. W. S. Wong. An approximate dynamic programming approach for coordinated charging control at vehicle-to-grid aggregator. In: Proceedings of 2011 IEEE International Conference on Smart Grid Communications (SmartGridComm). Brussels, Belgium, 2011: 279–284
12   E. Sortomme, M. A. El-Sharkawi. Optimal scheduling of vehicle-to-grid energy and ancillary services. IEEE Trans. Smart Grid, 2012, 3(1): 351–359
13   R. N. Anderson, A. Boulanger, W. B. Powell, W. Scott. Adaptive stochastic control for the smart grid. Proc. IEEE, 2011, 99(6): 1098–1115
14   N. Gatsis, G. B. Giannakis. Residential load control: Distributed scheduling and convergence with lost AMI messages. IEEE Trans. Smart Grid, 2012, 3(2): 770–786
15   N. Gatsis, G. B. Giannakis. Cooperative multi-residence demand response scheduling. In: Proceedings of 2011 45th Annual Conference on Information Sciences and Systems (CISS). Baltimore, MD, USA, 2011: 1–6
16   Z. Fan. A distributed demand response algorithm and its application to PHEV charging in smart grids. IEEE Trans. Smart Grid, 2012, 3(3): 1280–1290
17   S. Weckx, J. Driesen, R. D’hulst. Optimal real-time pricing for unbalanced distribution grids with network constraints. In: Proceedings of 2013 IEEE Power and Energy Society General Meeting. Vancouver, BC, Canada, 2013: 1–5
18   M. D. Galus, R. La Fauci, G. Andersson. Investigating PHEV wind balancing capabilities using heuristics and model predictive control. In: Proceedings of 2010 IEEE Power and Energy Society General Meeting. Minneapolis, MN, USA, 2010: 1–8
19   B. Biegel, P. Andersen, T. S. Pedersen, K. M. Nielsen, J. Stoustrup, L. H. Hansen. Smart grid dispatch strategy for ON/OFF demand-side devices. In: Proceedings of 2013 European Control Conference (ECC). Zurich, Switzerland, 2013: 2541–2548
20   S. Koch, J. L. Mathieu, D. S. Callaway. Modeling and control of aggregated heterogeneous thermostatically controlled loads for ancillary services. In: Proceedings of the 17th Power Systems Computation Conference. Stockholm, Sweden, 2011: 1–8
21   P. Bach Andersen, J. Hu, K. Heussen. Coordination strategies for distribution grid congestion management in a Multi-Actor, Multi-Objective Setting. In: Proceedings of 2012 3rd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies (ISGT Europe). Berlin, Germany, 2012: 1–8
22   K. Clement-Nyns, E. Haesen, J. Driesen. The impact of vehicle-to-grid on the distribution grid. Electr. Pow. Syst. Res., 2011, 81(1): 185–192
23   T. Loix. Participation of inverter-connected distributed energy resources in grid voltage control (Doctoral dissertation). Leuven, Belgium: KU Leuven, 2011
24   R. Garcia-Valle, J. A. P. Lopes. Electric Vehicle Integration into Modern Power Networks. New York: Springer Science & Business Media, 2012
25   K. Kok. The PowerMatcher: Smart coordination for the smart electricity grid (Doctoral dissertation). Amsterdam, the Netherlands: Vrije Universiteit Amsterdam, 2013
26   J. K. Kok, C. J. Warmer, I. G. Kamphuis. PowerMatcher: Multiagent control in the electricity infrastructure. In: Proceedings of the 4th International Joint Conference on Autonomous Agents and Multiagent Systems. Utrecht, the Netherlands, 2005: 75–82
27   J. K. Kok, M. J. J. Scheepers, I. G. Kamphuis. Intelligence in electricity networks for embedding renewables and distributed generation. In: R. R. Negenborn, Z. Lukszo, H. Hellendoorn, eds. Intelligent Infrastructures. Dordrecht: Springer, 2010: 179–209
28   J. Van Roy, N. Leemput, S. De Breucker, F. Geth, P. Tant, J. Driesen. An availability analysis and energy consumption model for a Femish fleet of electric vehicles. In: Proceedings of 2011 European Electric Vehicle Congress. Brussels, Belgium, 2011: 1–12
29   A. J. Brand. Wind power forecasting method AVDE. In: Proceedings of China/Global Wind Power Conference. Beijing, China, 2008: 1–6
30   B. Dupont, LINEAR breakthrough project: Large-scale implementation of smart grid technologies in distribution grids. In: Proceedings of 2012 3rd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies (ISGT Europe). Berlin, Germany, 2012: 1–8
31   M. Baritaud. Securing power during the transition: Generation investment and operation issues in electricity markets with low-carbon policies. Paris: International Energy Agency, 2012
[1] Till Luhmann,Enno Wieben,Riccardo Treydel,Michael Stadler,Thomas Kumm. An Approach for Cost-Efficient Grid Integration of Distributed Renewable Energy Sources[J]. Engineering, 2015, 1(4): 447 -452 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.