Please wait a minute...
Submit  |   Chinese  | 
 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2015, Vol. 1 Issue (4) : 422 -435     https://doi.org/10.15302/J-ENG-2015109
Research |
Agent-Based Simulation for Interconnection-Scale Renewable Integration and Demand Response Studies
David P. Chassin1,2,3,Sahand Behboodi1,2,Curran Crawford1,2,Ned Djilali1,2,4,()
1. Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada
2. Institute for Integrated Energy Systems, University of Victoria, Victoria, BC V8W 2Y2, Canada
3. Pacific Northwest National Laboratory, Richland, WA 99352, USA
4. Renewable Energy Research Group, King Abdulaziz University, Jeddah, Makkah 21589, Saudi Arabia
Abstract
Abstract  

This paper collects and synthesizes the technical requirements, implementation, and validation methods for quasi-steady agent-based simulations of interconnection-scale models with particular attention to the integration of renewable generation and controllable loads. Approaches for modeling aggregated controllable loads are presented and placed in the same control and economic modeling framework as generation resources for interconnection planning studies. Model performance is examined with system parameters that are typical for an interconnection approximately the size of the Western Electricity Coordinating Council (WECC) and a control area about 1/100 the size of the system. These results are used to demonstrate and validate the methods presented.

Keywords interconnection studies      demand response      load control      renewable integration      agent-based simulation      electricity markets     
Corresponding Authors: Ned Djilali   
Just Accepted Date: 23 December 2015   Issue Date: 04 January 2016
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
David P. Chassin
Sahand Behboodi
Curran Crawford
Ned Djilali
Cite this article:   
David P. Chassin,Sahand Behboodi,Curran Crawford, et al. Agent-Based Simulation for Interconnection-Scale Renewable Integration and Demand Response Studies[J]. Engineering, 2015, 1(4): 422 -435 .
URL:  
http://engineering.org.cn/EN/10.15302/J-ENG-2015109     OR     http://engineering.org.cn/EN/Y2015/V1/I4/422
References
1   Y. V. Makarov, C. Loutan, J. Ma, P. de Mello. Operational impacts of wind generation on California power systems. IEEE Trans. Power Syst., 2009, 24(2): 1039–1050
2   L. Kane, G. Ault, S. Gill. An assessment of principles of access for wind generation curtailment in active network management schemes. In: Proceedings of the 22nd International Conference and Exhibition on Electricity Distribution. Stockholm, Sweden, 2013: 0237
3   F. C. Schweppe, R. D. Tabors, J. L. Kirtley, H. R. Outhred, F. H. Pickel, A. J. Cox. Homeostatic utility control. IEEE Trans. Power App. Syst., 1980, PAS-99(3): 1151–1163
4   D. Trudnowski, M. Donnelly, E. Lightner. Power-system frequency and stability control using decentralized intelligent loads. In: Proceedings of 2005/2006 IEEE Power Engineering Society Transmission and Distribution Conference and Exhibition. Dallas, TX, USA, 2006: 1453–1459
5   D. J. Hammerstrom,  Pacific Northwest GridWise™ Testbed Demonstration Projects: Part II. Grid Friendly™ Appliance Project, PNNL-17079. Richland: Pacific Northwest National Laboratory, 2007
6   J. Kondoh, N. Lu, D. J. Hammerstrom. An evaluation of the water heater load potential for providing regulation service. IEEE Trans. Power Syst., 2011, 26(3): 1309–1316
7   P. Kundur. Power System Stability and Control. New York: McGraw Hill, Inc., 1994
8   D. S. Callaway. Tapping the energy storage potential in electric loads to deliver load following and regulation, with application to wind energy. Energy Convers. Manage., 2009, 50(5): 1389–1400
9   R. G. Pratt, C. C. Conner, B. A. Cooke, E. E. Richman. Metered end-use consumption and load shapes from the ELCAP residential sample of existing homes in the Pacific Northwest. Energ. Buildings, 1993, 19(3): 179–193
10   D. Baylon, P. Storm, B. Hannas, K. Geraghty, V. Mudford. Residential building stock assessment: Multifamily characteristics and energy use, 13−263. Portland: Northwest Energy Efficiency Alliance, 2013
11   F. Rahimi, A. Ipakchi. Demand response as a market resource under the smart grid paradigm. IEEE Trans. Smart Grid, 2010, 1(1): 82–88
12   J. Ma, Y. V. Makarov, C. Loutan, Z. Xie. Impact of wind and solar generation on the California ISO’s intra-hour balancing needs. In: Proceedings of 2011 IEEE Power and Energy Society General Meeting. San Diego, CA, USA, 2011: 1–6
13   A. J. Conejo, J. M. Morales, L. Baringo. Real-time demand response model. IEEE Trans. Smart Grid, 2010, 1(3): 236–242
14   M. D. Ilic, Y. Makarov, D. Hawkins. Operations of electric power systems with high penetration of wind power: Risks and possible solutions. In: Proceedings of 2007 IEEE Power Engineering Society General Meeting. Tampa, FL, USA, 2007: 1–4
15   N. Lu, P. Du, Y. V. Makarov. The potential of thermostatically controlled appliances for intra-hour energy storage applications. In: Proceedings of 2012 IEEE Power and Energy Society General Meeting. San Diego, CA, USA, 2012: 1–6
16   D. J. Hammerstrom,  Pacific Northwest GridWise™ Testbed Demonstration Projects: Part I. Olympic Peninsula Project, PNNL-17167. Richland: Pacific Northwest National Laboratory, 2007
17   A. Faruqui, R. Hledik, J. Tsoukalis. The power of dynamic pricing. Electr. J., 2009, 22(3): 42–56
18   S. E. Widergren,  AEP Ohio gridSMART® Demonstration Project Real-Time Pricing demonstration analysis, PNNL-23192. Richland: Pacific Northwest National Laboratory, 2014
19   K. Subbarao, J. Fuller, K. Kalsi, R. Pratt, S. Widergren, D. Chassin. Transactive control and coordination of distributed assets for ancillary services, PNNL-22942. Richland: Pacific Northwest National Laboratory, 2013
20   D. Fabozzi, T. Van Cutsem. Simplified time-domain simulation of detailed long-term dynamic models. In: Proceedings of 2009 IEEE Power and Energy Society General Meeting. Calgary, AB, Canada, 2009: 1–8
21   D. P. Chassin, J. C. Fuller, N. Djilali. GridLAB-D: An agent-based simulation framework for smart grids. J. Appl. Math., 2014(2014): 492320
22   S. Stoft. Power System Economics: Designing Markets for Electricity. Piscataway: Wiley-IEEE Press, 2002
23   B. C. Ummels, M. Gibescu, E. Pelgrum, W. L. Kling, A. J. Brand. Impacts of wind power on thermal generation unit commitment and dispatch. IEEE Trans. Energ. Convers., 2007, 22(1): 44–51
24   R. Billinton, G. Bai. Generating capacity adequacy associated with wind energy. IEEE Trans. Energ. Convers., 2004, 19(3): 641–646
25   L. Soder. Reserve margin planning in a wind-hydro-thermal power system. IEEE Trans. Power Syst., 1993, 8(2): 564–571
26   A. Fabbri, T. G. S. Roma?n, J. R. Abbad, V. H. M. Quezada. Assessment of the cost associated with wind generation prediction errors in a liberalized electricity market. IEEE Trans. Power Syst., 2005, 20(3): 1440–1446
27   M. Govardhan, F. Master, R. Roy. Economic analysis of different demand response programs on unit commitment. In: Proceedings of 2014 IEEE Region 10 Conference. Bangkok, Thailand, 2014: 1–6
28   C. Zhao, J. Wang, J. P. Watson, Y. Guan. Multi-stage robust unit commitment considering wind and demand response uncertainties. IEEE Trans. Power Syst., 2013, 28(3): 2708–2717
29   M. Kia, M. M. R. Sahebi, E. A. Duki, S. H. Hosseini. Simultaneous implementation of optimal demand response and security constrained unit commitment. In: Proceedings of the 16th IEEE Conference on Electrical Power Distribution Networks. Bandar Abbas, Iran, 2011: 1–5
30   A. Papavasiliou, S. S. Oren. A stochastic unit commitment model for integrating renewable supply and demand response. In: Proceedings of 2012 IEEE Power and Energy Society General Meeting. San Diego, CA, USA, 2012: 1–6
31   E. Bonabeau. Agent-based modeling: Methods and techniques for simulating human systems. Proc. Natl. Acad. Sci. U.S.A., 2002, 99(Suppl 3): 7280–7287
32   B. L. Heath, R. R. Hill, F. W. Ciarallo. A survey of agent-based modeling practices (January 1998 to July 2008). JASSS-J. Artif. Soc. S., 2009, 12(4): 9
33   F. Klügl. A validation methodology for agent-based simulations. In: Proceedings of the 2008 ACM symposium on Applied Computing. Fortaleza, Ceara, Brazil, 2008: 39–43
34   S. Behboodi, D. P. Chassin, C. Crawford, N. Djilali. Renewable resources portfolio optimization in the presence of demand response. Appl. Energ., 2016, 162: 139–148
35   D. Kosterev,  Development and implementation of composite load model in WECC. In: Proceedings of CIGRE 2015 Grid of the Future Symposium. Philadelphia, PA, USA, 2015
36   W. Zhang, J. Lian, C. Y. Chang, K. Kalsi. Aggregated modeling and control of air conditioning loads for demand response. IEEE Trans. Power Syst., 2013, 28(4): 4655–4664
37   D. P. Chassin. New residential thermostat for transactive systems (Master’s thesis). Greater Victoria: University of Victoria, 2014
38   D. McFadden. Quantal choice analysis: A survey. Ann. Econ. Soc. Meas., 1976, 5(4): 363–390
39   K. G. Pillai, C. Hofacker. Calibration of consumer knowledge of the web. Int. J. Res. Mark., 2007, 24(3): 254–267
40   P. Jazayeri,  A survey of load control programs for price and system stability. IEEE Trans. Power Syst., 2005, 20(3): 1504–1509
41   N. Lu, D. J. Hammerstrom. Design considerations for frequency responsive Grid FriendlyTM appliances. In: Proceedings of 2005/2006 IEEE Power Engineering Society Transmission and Distribution Conference and Exhibition. Dallas, TX, USA, 2006: 647–652
42   J. Xie, C. C. Liu, M. Sforna. Distributed underfrequency load shedding using a multi-agent system. In: Proceedings of 2015 IEEE Eindhoven PowerTech. Eindhoven, the Netherlands, 2015: 1–6
43   B. P. Zeigler, H. Praehofer, T. G. Kim. Theory of Modeling and Simulation: Integrating Discrete Event and Continuous Complex Dynamic Systems. 2nd ed. San Diego: Academic Press, 2000
44   K. M. Carley, Validating computational models. Pittsburgh: Carnegie Mellon University, 1996
45   M. Richiardi, R. Leombruni, N. Saam, M. Sonnessa. A common protocol for agent-based social simulation. JASSS-J. Artif. Soc. S., 2006, 9(1): 15
46   P. Windrum, G. Fagiolo, A. Moneta. Empirical validation of agent-based models: Alternatives and prospects. JASSS-J. Artif. Soc. S., 2007, 10(2): 8
47   C. Werker, T. Brenner. Empirical calibration of simulation models, Papers on Economics and Evolution # 0410. Jena: Max Planck Institute for Research into Economic Systems, 2004
Related
No related articles found!
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
京ICP备11030251号-2

 Engineering