Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Current Issue
Table of Contents Previous Issue   
Volume 3 • Issue 3 • June 2017 • Pages 279 -427
News & Highlights
Views & Comments
Topic Insights
    • [Online] Green Chemical Engineering
About the cover
For Selected: View Abstracts Toggle Thumbnails
Green Chemical Engineering for a Better Life
Jian-Feng Chen
Engineering . 2017, 3 (3): 279 .   DOI: 10.1016/J.ENG.2017.03.028
Abstract   HTML   PDF (456KB)
Figures and Tables | References | Related Articles | Metrics
News & Highlights
A Breakthrough in the Industrialization of Manufacturing Technology for New Mainstream Low-GWP Refrigerants in China
Shuhua Wang,Weidong Zhu,Yan Zhang,Lihong Su,Bo Yang
Engineering . 2017, 3 (3): 280 .   DOI: 10.1016/J.ENG.2017.03.001
Abstract   HTML   PDF (387KB)
References | Related Articles | Metrics
Views & Comments
Reconciling “Micro” and “Macro” through Meso-Science
Raffaella Ocone
Engineering . 2017, 3 (3): 281 -282 .   DOI: 10.1016/J.ENG.2017.03.009
Abstract   HTML   PDF (386KB)
References | Related Articles | Metrics
Topic Insights
Green Chemical Engineering
Jian-Feng Chen
Engineering . 2017, 3 (3): 283 -284 .   DOI: 10.1016/J.ENG.2017.03.025
Abstract   HTML   PDF (382KB)
References | Related Articles | Metrics
Improved Oxygen Evolution Kinetics and Surface States Passivation of Ni-Bi Co-Catalyst for a Hematite Photoanode
Ke Dang,Tuo Wang,Chengcheng Li,Jijie Zhang,Shanshan Liu,Jinlong Gong
Engineering . 2017, 3 (3): 285 -289 .   DOI: 10.1016/J.ENG.2017.03.005
Abstract   HTML   PDF (1314KB)

This paper describes the combinational surface kinetics enhancement and surface states passivation of nickel-borate (Ni-Bi) co-catalyst for a hematite (Fe2O3) photoanode. The Ni-Bi-modified Fe2O3 photoanode exhibits a cathodic onset potential shift of 230 mV and a 2.3-fold enhancement of the photocurrent at 1.23 V, versus the reversible hydrogen electrode (RHE). The borate (Bi) in the Ni-Bi film promotes the release of protons for the oxygen evolution reaction (OER).

Figures and Tables | References | Supplementary Material | Related Articles | Metrics
Membrane Engineering for Green Process Engineering
Francesca Macedonio,Enrico Drioli
Engineering . 2017, 3 (3): 290 -298 .   DOI: 10.1016/J.ENG.2017.03.026
Abstract   HTML   PDF (693KB)

Green process engineering, which is based on the principles of the process intensification strategy, can provide an important contribution toward achieving industrial sustainable development. Green process engineering refers to innovative equipment and process methods that are expected to bring about substantial improvements in chemical and any other manufacturing and processing aspects. It includes decreasing production costs, equipment size, energy consumption, and waste generation, and improving remote control, information fluxes, and process flexibility. Membrane-based technology assists in the pursuit of these principles, and the potential of membrane operations has been widely recognized in the last few years. This work starts by presenting an overview of the membrane operations that are utilized in water treatment and in the production of energy and raw materials. Next, it describes the potential advantages of innovative membrane-based integrated systems. A case study on an integrated membrane system (IMS) for seawater desalination coupled with raw materials production is presented. The aim of this work is to show how membrane systems can contribute to the realization of the goals of zero liquid discharge (ZLD), total raw materials utilization, and low energy consumption.

Figures and Tables | References | Related Articles | Metrics
A Technological Overview of Biogas Production from Biowaste
Spyridon Achinas,Vasileios Achinas,Gerrit Jan Willem Euverink
Engineering . 2017, 3 (3): 299 -307 .   DOI: 10.1016/J.ENG.2017.03.002
Abstract   HTML   PDF (1252KB)

The current irrational use of fossil fuels and the impact of greenhouse gases on the environment are driving research into renewable energy production from organic resources and waste. The global energy demand is high, and most of this energy is produced from fossil resources. Recent studies report that anaerobic digestion (AD) is an efficient alternative technology that combines biofuel production with sustainable waste management, and various technological trends exist in the biogas industry that enhance the production and quality of biogas. Further investments in AD are expected to meet with increasing success due to the low cost of available feedstocks and the wide range of uses for biogas (i.e., for heating, electricity, and fuel). Biogas production is growing in the European energy market and offers an economical alternative for bioenergy production. The objective of this work is to provide an overview of biogas production from lignocellulosic waste, thus providing information toward crucial issues in the biogas economy.

Figures and Tables | References | Related Articles | Metrics
Advances in Cadaverine Bacterial Production and Its Applications
Weichao Ma,Kequan Chen,Yan Li,Ning Hao,Xin Wang,Pingkai Ouyang
Engineering . 2017, 3 (3): 308 -317 .   DOI: 10.1016/J.ENG.2017.03.012
Abstract   HTML   PDF (1338KB)

Cadaverine, a natural polyamine with multiple bioactivities that is widely distributed in prokaryotes and eukaryotes, is becoming an important industrial chemical. Cadaverine exhibits broad prospects for various applications, especially as an important monomer for bio-based polyamides. Cadaverine-based polyamide PA 5X has broad application prospects owing to its environmentally friendly characteristics and exceptional performance in water absorption and dimensional stability. In this review, we summarize recent findings on the biosynthesis, metabolism, and physiological function of cadaverine in bacteria, with a focus on the regulatory mechanism of cadaverine synthesis in Escherichia coli (E. coli). We also describe recent developments in bacterial production of cadaverine by direct fermentation and whole-cell bioconversion, and recent approaches for the separation and purification of cadaverine. In addition, we present an overview of the application of cadaverine in the synthesis of completely bio-based polyamides. Finally, we provide an outlook and suggest future developments to advance the production of cadaverine from renewable resources.

Figures and Tables | References | Related Articles | Metrics
Design of Photobioreactors for Mass Cultivation of Photosynthetic Organisms
Qingshan Huang,Fuhua Jiang,Lianzhou Wang,Chao Yang
Engineering . 2017, 3 (3): 318 -329 .   DOI: 10.1016/J.ENG.2017.03.020
Abstract   HTML   PDF (1481KB)

Photosynthetic microorganisms are important bioresources for producing desirable and environmentally benign products, and photobioreactors (PBRs) play important roles in these processes. Designing PBRs for photocatalysis is still challenging at present, and most reactors are designed and scaled up using semi-empirical approaches. No appropriate types of PBRs are available for mass cultivation due to the reactors’ high capital and operating costs and short lifespan, which are mainly due to a current lack of deep understanding of the coupling of light, hydrodynamics, mass transfer, and cell growth in efficient reactor design. This review provides a critical overview of the key parameters that influence the performance of the PBRs, including light, mixing, mass transfer, temperature, pH, and capital and operating costs. The lifespan and the costs of cleaning and temperature control are also emphasized for commercial exploitation. Four types of PBRs—tubular, plastic bag, column airlift, and flat-panel airlift reactors are recommended for large-scale operations. In addition, this paper elaborates the modeling of PBRs using the tools of computational fluid dynamics for rational design. It also analyzes the difficulties in the numerical simulation, and presents the prospect for mechanism-based models.

Figures and Tables | References | Related Articles | Metrics
Fluidized-Bed Bioreactor Applications for Biological Wastewater Treatment: A Review of Research and Developments
Michael J. Nelson,George Nakhla,Jesse Zhu
Engineering . 2017, 3 (3): 330 -342 .   DOI: 10.1016/J.ENG.2017.03.021
Abstract   HTML   PDF (980KB)

Wastewater treatment is a process that is vital to protecting both the environment and human health. At present, the most cost-effective way of treating wastewater is with biological treatment processes such as the activated sludge process, despite their long operating times. However, population increases have created a demand for more efficient means of wastewater treatment. Fluidization has been demonstrated to increase the efficiency of many processes in chemical and biochemical engineering, but it has not been widely used in large-scale wastewater treatment. At the University of Western Ontario, the circulating fluidized-bed bioreactor (CFBBR) was developed for treating wastewater. In this process, carrier particles develop a biofilm composed of bacteria and other microbes. The excellent mixing and mass transfer characteristics inherent to fluidization make this process very effective at treating both municipal and industrial wastewater. Studies of lab- and pilot-scale systems showed that the CFBBR can remove over 90% of the influent organic matter and 80% of the nitrogen, and produces less than one-third as much biological sludge as the activated sludge process. Due to its high efficiency, the CFBBR can also be used to treat wastewaters with high organic solid concentrations, which are more difficult to treat with conventional methods because they require longer residence times; the CFBBR can also be used to reduce the system size and footprint. In addition, it is much better at handling and recovering from dynamic loadings (i.e., varying influent volume and concentrations) than current systems. Overall, the CFBBR has been shown to be a very effective means of treating wastewater, and to be capable of treating larger volumes of wastewater using a smaller reactor volume and a shorter residence time. In addition, its compact design holds potential for more geographically localized and isolated wastewater treatment systems.

Figures and Tables | References | Related Articles | Metrics
Recent Developments in the Crystallization Process: Toward the Pharmaceutical Industry
Zhenguo Gao,Sohrab Rohani,Junbo Gong,Jingkang Wang
Engineering . 2017, 3 (3): 343 -353 .   DOI: 10.1016/J.ENG.2017.03.022
Abstract   HTML   PDF (2534KB)

Crystallization is one of the oldest separation and purification unit operations, and has recently contributed to significant improvements in producing higher-value products with specific properties and in building efficient manufacturing processes. In this paper, we review recent developments in crystal engineering and crystallization process design and control in the pharmaceutical industry. We systematically summarize recent methods for understanding and developing new types of crystals such as co-crystals, polymorphs, and solvates, and include several milestones such as the launch of the first co-crystal drug, Entresto (Novartis), and the continuous manufacture of Orkambi (Vertex). Conventional batch and continuous processes, which are becoming increasingly mature, are being coupled with various control strategies and the recently developed crystallizers are thus adapting to the needs of the pharmaceutical industry. The development of crystallization process design and control has led to the appearance of several new and innovative crystallizer geometries for continuous operation and improved performance. This paper also reviews major recent progress in the area of process analytical technology.

Figures and Tables | References | Related Articles | Metrics
Progress of Pharmaceutical Continuous Crystallization
Dejiang Zhang,Shijie Xu,Shichao Du,Jingkang Wang,Junbo Gong
Engineering . 2017, 3 (3): 354 -364 .   DOI: 10.1016/J.ENG.2017.03.023
Abstract   HTML   PDF (1797KB)

Crystallization is an important unit operation in the pharmaceutical industry. At present, most pharmaceutical crystallization processes are performed in batches. However, due to product variability from batch to batch and to the low productivity of batch crystallization, continuous crystallization is gaining increasing attention. In the past few years, progress has been made to allow the products of continuous crystallization to meet different requirements. This review summarizes the progress in pharmaceutical continuous crystallization from a product engineering perspective. The advantages and disadvantages of different types of continuous crystallization are compared, with the main difference between the two main types of crystallizers being their difference in residence time distribution. Approaches that use continuous crystallization to meet different quality requirements are summarized. Continuous crystallization has advantages in terms of size and morphology control. However, it also has the problem of a process yield that may be lower than that of a batch process, especially in the production of chirality crystals. Finally, different control strategies are compared.

Figures and Tables | References | Related Articles | Metrics
Tantalum (Oxy)Nitride: Narrow Bandgap Photocatalysts for Solar Hydrogen Generation
Mu Xiao,Songcan Wang,Supphasin Thaweesak,Bin Luo,Lianzhou Wang
Engineering . 2017, 3 (3): 365 -378 .   DOI: 10.1016/J.ENG.2017.03.019
Abstract   HTML   PDF (6167KB)

Photocatalytic water splitting, which directly converts solar energy into hydrogen, is one of the most desirable solar-energy-conversion approaches. The ultimate target of photocatalysis is to explore efficient and stable photocatalysts for solar water splitting. Tantalum (oxy)nitride-based materials are a class of the most promising photocatalysts for solar water splitting because of their narrow bandgaps and sufficient band energy potentials for water splitting. Tantalum (oxy)nitride-based photocatalysts have experienced intensive exploration, and encouraging progress has been achieved over the past years. However, the solar-to-hydrogen (STH) conversion efficiency is still very far from its theoretical value. The question of how to better design these materials in order to further improve their water-splitting capability is of interest and importance. This review summarizes the development of tantalum (oxy)nitride-based photocatalysts for solar water spitting. Special interest is paid to important strategies for improving photocatalytic water-splitting efficiency. This paper also proposes future trends to explore in the research area of tantalum-based narrow bandgap photocatalysts for solar water splitting.

Figures and Tables | References | Related Articles | Metrics
Green Production Technology of the Monomer of Nylon-6: Caprolactam
Baoning Zong,Bin Sun,Shibiao Cheng,Xuhong Mu,Keyong Yang,Junqi Zhao,Xiaoxin Zhang,Wei Wu
Engineering . 2017, 3 (3): 379 -384 .   DOI: 10.1016/J.ENG.2017.03.003
Abstract   HTML   PDF (3181KB)

After two decades’ endeavor, the Research Institute of Petroleum Processing (RIPP) has successfully developed a green caprolactam (CPL) production technology. This technology is based on the integration of titanium silicate (TS)-1 zeolite with the slurry-bed reactor for the ammoximation of cyclohexanone, the integration of silicalite-1 zeolite with the moving-bed reactor for the gas-phase rearrangement of cyclohexanone oxime, and the integration of an amorphous nickel (Ni) catalyst with the magnetically stabilized bed reactor for the purification of caprolactam. The world’s first industrial plant based on this green CPL production technology has been built and possesses a capacity of 200?kt·a−1. Compared with existing technologies, the plant investment is pronouncedly reduced, and the nitrogen (N) atom utilization is drastically improved. The waste emission is reduced significantly; for example, no ammonium sulfate byproduct is produced. As a result, the price difference between CPL and benzene drops. In 2015, the capacity of the green CPL production technology reached 3?×?106?t·a−1, making China the world’s largest CPL producer, with a global market share exceeding 50%.

Figures and Tables | References | Related Articles | Metrics
Effects of Potassium and Manganese Promoters on Nitrogen-Doped Carbon Nanotube-Supported Iron Catalysts for CO2 Hydrogenation
Praewpilin Kangvansura,Ly May Chew,Chanapa Kongmark,Phatchada Santawaja,Holger Ruland,Wei Xia,Hans Schulz,Attera Worayingyong,Martin Muhler
Engineering . 2017, 3 (3): 385 -392 .   DOI: 10.1016/J.ENG.2017.03.013
Abstract   HTML   PDF (4082KB)

Nitrogen-doped carbon nanotubes (NCNTs) were used as a support for iron (Fe) nanoparticles applied in carbon dioxide (CO2) hydrogenation at 633 K and 25 bar (1 bar= 105 Pa). The Fe/NCNT catalyst promoted with both potassium (K) and manganese (Mn) showed high performance in CO2 hydrogenation, reaching 34.9% conversion with a gas hourly space velocity (GHSV) of 3.1 L·(g·h)−1. Product selectivities were high for olefin products and low for short-chain alkanes for the K-promoted catalysts. When Fe/NCNT catalyst was promoted with both K and Mn, the catalytic activity was stable for 60 h of reaction time. The structural effect of the Mn promoter was demonstrated by X-ray diffraction (XRD), temperature-programmed reduction (TPR) with molecular hydrogen (H2), and in situ X-ray absorption near-edge structure (XANES) analysis. The Mn promoter stabilized wüstite (FeO) as an intermediate and lowered the TPR onset temperature. Catalytic ammonia (NH3) decomposition was used as an additional probe reaction for characterizing the promoter effects. The Fe/NCNT catalyst promoted with both K and Mn had the highest catalytic activity, and the Mn-promoted Fe/NCNT catalysts had the highest thermal stability under reducing conditions.

Figures and Tables | References | Related Articles | Metrics
Harnessing the Beneficial Attributes of Ceria and Titania in a Mixed-Oxide Support for Nickel-Catalyzed Photothermal CO2 Methanation
Ee Teng Kho,Salina Jantarang,Zhaoke Zheng,Jason Scott,Rose Amal
Engineering . 2017, 3 (3): 393 -401 .   DOI: 10.1016/J.ENG.2017.03.016
Abstract   HTML   PDF (1680KB)

Solar-powered carbon dioxide (CO2)-to-fuel conversion presents itself as an ideal solution for both CO2 mitigation and the rapidly growing world energy demand. In this work, the heating effect of light irradiation onto a bed of supported nickel (Ni) catalyst was utilized to facilitate CO2 conversion. Ceria (CeO2)-titania (TiO2) oxide supports of different compositions were employed and their effects on photothermal CO2 conversion examined. Two factors are shown to be crucial for instigating photothermal CO2 methanation activity: ① Fine nickel deposits are required for both higher active catalyst area and greater light absorption capacity for the initial heating of the catalyst bed; and ② the presence of defect sites on the support are necessary to promote adsorption of CO2 for its subsequent activation. Titania inclusion within the support plays a crucial role in maintaining the oxygen vacancy defect sites on the (titanium-doped) cerium oxide. The combination of elevated light absorption and stabilized reduced states for CO2 adsorption subsequently invokes effective photothermal CO2 methanation when the ceria and titania are blended in the ideal ratio(s).

Figures and Tables | References | Supplementary Material | Related Articles | Metrics
Facile and Scalable Preparation of Fluorescent Carbon Dots for Multifunctional Applications
Dan Wang,Zhiyong Wang,Qiuqiang Zhan,Yuan Pu,Jie-Xin Wang,Neil R. Foster,Liming Dai
Engineering . 2017, 3 (3): 402 -408 .   DOI: 10.1016/J.ENG.2017.03.014
Abstract   HTML   PDF (2717KB)

The synthesis of fluorescent nanomaterials has received considerable attention due to the great potential of these materials for a wide range of applications, from chemical sensing through bioimaging to optoelectronics. Herein, we report a facile and scalable approach to prepare fluorescent carbon dots (FCDs) via a one-pot reaction of citric acid with ethylenediamine at 150 °C under ambient air pressure. The resultant FCDs possess an optical bandgap of 3.4 eV and exhibit strong excitation-wavelength-independent blue emission (λEm= 450 nm) under either one- or two-photon excitation. Owing to their low cytotoxicity and long fluorescence lifetime, these FCDs were successfully used as internalized fluorescent probes in human cancer cell lines (HeLa cells) for two-photon excited imaging of cells by fluorescence lifetime imaging microscopy with high-contrast resolution. They were also homogenously mixed with commercial inks and used to draw fluorescent patterns on normal papers and on many other substrates (e.g., certain flexible plastic films, textiles, and clothes). Thus, these nanomaterials are promising for use in solid-state fluorescent sensing, security labeling, and wearable optoelectronics.

Figures and Tables | References | Supplementary Material | Related Articles | Metrics
Optimization, Kinetics, and Equilibrium Studies on the Removal of Lead(II) from an Aqueous Solution Using Banana Pseudostem as an Adsorbent
Shridhar S. Bagali,Bychapur S. Gowrishankar,Aashis S. Roy
Engineering . 2017, 3 (3): 409 -415 .   DOI: 10.1016/J.ENG.2017.03.024
Abstract   HTML   PDF (1832KB)

Natural adsorbents such as banana pseudostem can play a vital role in the removal of heavy metal elements from wastewater. Major water resources and chemical industries have been encountering difficulties in removing heavy metal elements using available conventional methods. This work demonstrates the potential to treat various effluents utilizing natural materials. A characterization of banana pseudostem powder was performed using environmental scanning electron microscopy (ESEM) and Fourier-transform infrared (FTIR) spectroscopy before and after the adsorption of lead(II). Experiments were carried out using a batch process for the removal of lead(II) from an aqueous solution. The effects of the adsorption kinetics were studied by altering various parameters such as initial pH, adsorbent dosage, initial lead ion concentration, and contact time. The results show that the point of zero charge (PZC) for the banana pseudostem powder was achieved at a pH of 5.5. The experimental data were analyzed using isotherm and kinetic models. The adsorption of lead(II) onto banana pseudostem powder was fitted using the Langmuir adsorption isotherm. The adsorption capacity was found to be 34.21 mg·g−1, and the pseudo second-order kinetic model showed the best fit. The optimum conditions were found using response surface methodology. The maximum removal was found to be 89%.

Figures and Tables | References | Related Articles | Metrics
Thermodynamic Analysis of the Gasification of Municipal Solid Waste
Pengcheng Xu,Yong Jin,Yi Cheng
Engineering . 2017, 3 (3): 416 -422 .   DOI: 10.1016/J.ENG.2017.03.004
Abstract   HTML   PDF (1504KB)

This work aims to understand the gasification performance of municipal solid waste (MSW) by means of thermodynamic analysis. Thermodynamic analysis is based on the assumption that the gasification reactions take place at the thermodynamic equilibrium condition, without regard to the reactor and process characteristics. First, model components of MSW including food, green wastes, paper, textiles, rubber, chlorine-free plastic, and polyvinyl chloride were chosen as the feedstock of a steam gasification process, with the steam temperature ranging from 973 K to 2273 K and the steam-to-MSW ratio (STMR) ranging from 1 to 5. It was found that the effect of the STMR on the gasification performance was almost the same as that of the steam temperature. All the differences among the seven types of MSW were caused by the variation of their compositions. Next, the gasification of actual MSW was analyzed using this thermodynamic equilibrium model. It was possible to count the inorganic components of actual MSW as silicon dioxide or aluminum oxide for the purpose of simplification, due to the fact that the inorganic components mainly affected the reactor temperature. A detailed comparison was made of the composition of the gaseous products obtained using steam, hydrogen, and air gasifying agents to provide basic knowledge regarding the appropriate choice of gasifying agent in MSW treatment upon demand.

Figures and Tables | References | Related Articles | Metrics
Application of Microwave Melting for the Recovery of Tin Powder
Lei Xu,Jinhui Peng,Hailong Bai,C. Srinivasakannan,Libo Zhang,Qingtian Wu,Zhaohui Han,Shenghui Guo,Shaohua Ju,Li Yang
Engineering . 2017, 3 (3): 423 -427 .   DOI: 10.1016/J.ENG.2017.03.006
Abstract   HTML   PDF (2316KB)

The present work explores the application of microwave heating for the melting of powdered tin. The morphology and particle size of powdered tin prepared by the centrifugal atomization method were characterized. The tin particles were uniform and spherical in shape, with 90% of the particles in the size range of 38–75 μm. The microwave absorption characteristic of the tin powder was assessed by an estimation of the dielectric properties. Microwave penetration was found to have good volumetric heating on powdered tin. Conduction losses were the main loss mechanisms for powdered tin by microwave heating at temperatures above 150 °C. A 20 kW commercial-scale microwave tin-melting unit was designed, developed, and utilized for production. This unit achieved a heating rate that was at least 10 times higher than those of conventional methods, as well as a far shorter melting duration. The results suggest that microwave heating accelerates the heating rate and shortens the melting time. Tin recovery rate was 97.79%, with a slag ratio of only 1.65% and other losses accounting for less than 0.56%. The unit energy consumption was only 0.17 (kW·h)·kg−1—far lower than the energy required by conventional melting methods. Thus, the microwave melting process improved heating efficiency and reduced energy consumption.

Figures and Tables | References | Related Articles | Metrics
Corrigendum to “Interactions between the Design and Operation of Shale Gas Networks, Including CO2 Sequestration” [Engineering (2017) 244–256]
Mahdi Sharifzadeh,Xingzhi Wang,Nilay Shah
Engineering . 2017, 3 (3): 429 .   DOI: 10.1016/J.ENG.2017.03.027
Abstract   HTML   PDF (362KB)
References | Related Articles | Metrics
22 articles
Most Popular
Most Read
Most Download
Most Cited

Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
Today's visits ;Accumulated visits . 京ICP备11030251号-2