Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2015, Vol. 1 Issue (1) : 124 -130
Research |
Dual-Material Electron Beam Selective Melting: Hardware Development and Validation Studies
Chao Guo1,2,3,Wenjun Ge1,2,3,Feng Lin1,2,3,()
1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
2. Key Laboratory for Advanced Materials Processing Technology (Ministry of Education of China), Tsinghua University, Beijing 100084, China
3. Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Tsinghua University, Beijing 100084, China

Electron beam selective melting (EBSM) is an additive manufacturing technique that directly fabricates three-dimensional parts in a layerwise fashion by using an electron beam to scan and melt metal powder. In recent years, EBSM has been successfully used in the additive manufacturing of a variety of materials. Previous research focused on the EBSM process of a single material. In this study, a novel EBSM process capable of building a gradient structure with dual metal materials was developed, and a powder-supplying method based on vibration was put forward. Two different powders can be supplied individually and then mixed. Two materials were used in this study: Ti6Al4V powder and Ti47Al2Cr2Nb powder. Ti6Al4V has excellent strength and plasticity at room temperature, while Ti47Al2Cr2Nb has excellent performance at high temperature, but is very brittle. A Ti6Al4V/Ti47Al2Cr2Nb gradient material was successfully fabricated by the developed system. The microstructures and chemical compositions were characterized by optical microscopy, scanning microscopy, and electron microprobe analysis. Results showed that the interface thickness was about 300 μm. The interface was free of cracks, and the chemical compositions exhibited a staircase-like change within the interface.

Keywords additive manufacturing      electron beam      selective melting      gradient materials      titanium alloy      TiAl alloy     
Corresponding Authors: Feng Lin   
Just Accepted Date: 31 March 2015   Issue Date: 03 July 2015
E-mail this article
E-mail Alert
Articles by authors
Chao Guo
Wenjun Ge
Feng Lin
Cite this article:   
Chao Guo,Wenjun Ge,Feng Lin. Dual-Material Electron Beam Selective Melting: Hardware Development and Validation Studies[J]. Engineering, 2015, 1(1): 124 -130 .
URL:     OR
1   Y. N. Yan, H. B. Qi, F. Lin, W. He, H. R. Zhang, R. J. Zhang. Produced three-dimensional metal parts by electron beam selective melting. Chin. J. Mech. Eng., 2007, 43(6): 87–92 (in Chinese)
2   D. Cormier, O. L. A. Harrysson, T. Mahale, H. A. West. Freeform fabrication of titanium aluminide via electron beam melting using prealloyed and blended powders. Adv. Mater. Sci. Eng., 2008, 2007: 6822–6825
3   L. E. Murr,  Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J. Mater. Sci. Technol., 2012, 28(1): 1–14
4   L. E. Murr,  Microstructures of Rene 142 nickel-based superalloy fabricated by electron beam melting. Acta Mater., 2013, 61(11): 4289–4296
5   S. H. Sun, Y. Koizumi, S. Kurosu, Y. P. Li, H. Matsumoto, A. Chiba. Build direction dependence of microstructure and high-temperature tensile property of Co-Cr-Mo alloy fabricated by electron beam melting. Acta Mater., 2014, 64: 154–168
6   Y. Chen, C. Zeng, M. Yan. Research process of Ti base functional gradient materials. Mater. Rev., 2012, 26(S1): 267–270 (in Chinese)
7   R. Banerjee, D. Bhattacharyya, P. C. Collins, G. B. Viswanathan, H. L. Fraser. Precipitation of grain boundary a in a laser deposited compositionally graded Ti-8Al-xV alloy—An orientation microscopy study. Acta Mater., 2004, 52(2): 377–385
8   H. Sahasrabudhe, R. Harrison, C. Carpenter, A. Bandyopadhyay. Stainless steel to titanium bimetallic structure using LENSTM. Addit. Manuf., 2015, 5: 1–8
9   Y. Liang, X. Tian, Y. Zhu, J. Li, H. Wang. Compositional variation and microstructural evolution in laser additive manufactured Ti/Ti-6Al-2Zr-1Mo-1V graded structural material. Mater. Sci. Eng. A, 2014, 599: 242–246
10   H. P. Qu, P. Li, S. Q. Zhang, A. Li, H. M. Wang. Microstructure and mechanical property of laser melting deposition (LMD) Ti/TiAl structural gradient material. Mater. Des., 2010, 31(1): 574–582
11   Z. H. Liu, D. Q. Zhang, S. L. Sing, C. K. Chua, L. E. Loh. Interfacial characterization of SLM parts in multi-material processing: Metallurgical diffusion between 316L stainless steel and C18400 copper alloy. Mater. Charact., 2014, 94: 116–125
12   N. Hrabe, T. Quinn. Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti-6Al-4V) fabricated using electron beam melting (EBM), part 1: Distance from build plate and part si<?Pub Caret?>ze. Mater. Sci. Eng. A, 2013, 573: 264–270
[1] Shutian Liu, Quhao Li, Junhuan Liu, Wenjiong Chen, Yongcun Zhang. A Realization Method for Transforming a Topology Optimization Design into Additive Manufacturing Structures[J]. Engineering, 2018, 4(2): 277 -285 .
[2] Quy Bau Nguyen, Mui Ling Sharon Nai, Zhiguang Zhu, Chen-Nan Sun, Jun Wei, Wei Zhou. Characteristics of Inconel Powders for Powder-Bed Additive Manufacturing[J]. Engineering, 2017, 3(5): 695 -700 .
[3] Pinlian Han. Additive Design and Manufacturing of Jet Engine Parts[J]. Engineering, 2017, 3(5): 648 -652 .
[4] Patcharapit Promoppatum, Shi-Chune Yao, P. Chris Pistorius, Anthony D. Rollett. A Comprehensive Comparison of the Analytical and Numerical Prediction of the Thermal History and Solidification Microstructure of Inconel 718 Products Made by Laser Powder-Bed Fusion[J]. Engineering, 2017, 3(5): 685 -694 .
[5] Wentao Yan, Ya Qian, Weixin Ma, Bin Zhou, Yongxing Shen, Feng Lin. Modeling and Experimental Validation of the Electron Beam Selective Melting Process[J]. Engineering, 2017, 3(5): 701 -707 .
[6] Dongdong Gu, Chenglong Ma, Mujian Xia, Donghua Dai, Qimin Shi. A Multiscale Understanding of the Thermodynamic and Kinetic Mechanisms of Laser Additive Manufacturing[J]. Engineering, 2017, 3(5): 675 -684 .
[7] Zhen Zhang, Peng Yan, Guangbo Hao. A Large Range Flexure-Based Servo System Supporting Precision Additive Manufacturing[J]. Engineering, 2017, 3(5): 708 -715 .
[8] Amelia Yilin Lee, Jia An, Chee Kai Chua. Two-Way 4D Printing: A Review on the Reversibility of 3D-Printed Shape Memory Materials[J]. Engineering, 2017, 3(5): 663 -674 .
[9] Anders Clausen, Niels Aage, Ole Sigmund. Exploiting Additive Manufacturing Infill in Topology Optimization for Improved Buckling Load[J]. Engineering, 2016, 2(2): 250 -257 .
[10] Jun Yang,Yang Yang,Zhizhu He,Bowei Chen,Jing Liu. A Personal Desktop Liquid-Metal Printer as a Pervasive Electronics Manufacturing Tool for Society in the Near Future[J]. Engineering, 2015, 1(4): 506 -512 .
[11] Jia An, Joanne Ee Mei Teoh, Ratima Suntornnond, Chee Kai Chua. Design and 3D Printing of Scaffolds and Tissues[J]. Engineering, 2015, 1(2): 261 -268 .
[12] Bingheng Lu, Dichen Li, Xiaoyong Tian. Development Trends in Additive Manufacturing and 3D Printing[J]. Engineering, 2015, 1(1): 85 -89 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.