Please wait a minute...
Submit  |   Chinese  | 
 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2015, Vol. 1 Issue (2) : 261 -268     https://doi.org/10.15302/J-ENG-2015061
Research |
Design and 3D Printing of Scaffolds and Tissues
Jia An,Joanne Ee Mei Teoh,Ratima Suntornnond,Chee Kai Chua()
Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
Abstract
Abstract  

A growing number of?three-dimensional (3D)-print-ing processes have been applied to tissue engineering. This paper presents a state-of-the-art study of 3D-printing technologies?for tissue-engineering applications, with particular focus on the development of a computer-aided scaffold design system; the direct 3D printing of functionally graded scaffolds; the modeling of selective laser sintering (SLS) and fused deposition modeling (FDM) processes; the indirect additive manufacturing of scaffolds, with both micro and macro features; the development of a bioreactor; and 3D/4D bioprinting. Technological limitations will be discussed so as to highlight the possibility of future improvements for new 3D-printing methodologies for tissue engineering.

Keywords rapid prototyping      3D printing      additive manufacturing      tissue engineering      bioprinting     
Fund: 
Corresponding Authors: Chee Kai Chua   
Just Accepted Date: 30 June 2015   Issue Date: 16 September 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jia An
Joanne Ee Mei Teoh
Ratima Suntornnond
Chee Kai Chua
Cite this article:   
Jia An,Joanne Ee Mei Teoh,Ratima Suntornnond, et al. Design and 3D Printing of Scaffolds and Tissues[J]. Engineering, 2015, 1(2): 261 -268 .
URL:  
http://engineering.org.cn/EN/10.15302/J-ENG-2015061     OR     http://engineering.org.cn/EN/Y2015/V1/I2/261
References
1   R. Langer, J. P. Vacanti. Tissue engineering. Science, 1993, 260(5110): 920−926
2   Q. L. Loh, C. Choong. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Eng. Part B Rev., 2013, 19(6): 485−502
3   S. Yang, K. F. Leong, Z. Du, C. K. Chua. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng., 2001, 7(6): 679−689
4   S. Yang, K. F. Leong, Z. Du, C. K. Chua. The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng., 2002, 8(1): 1−11
5   K. F. Leong, C. M. Cheah, C. K. Chua. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials, 2003, 24(13): 2363−2378
6   W. Y. Yeong, C. K. Chua, K. F. Leong, M. Chandrasekaran. Rapid prototyping in tissue engineering: Challenges and potential. Trends Biotechnol., 2004, 22(12): 643−652
7   T. Boland, Rapid, prototyping of artificial tissues and medical devices. Adv. Mater. Process., 2007, 165(4): 51−53
8   P. J. Bártolo, C. K. Chua, H. A. Almeida, S. M. Chou, A. S. C. Lim. Biomanufacturing for tissue engineering: Present and future trends. Virtual and Physical Prototyping, 2009, 4(4): 203−216
9   S. J. Hollister. Porous scaffold design for tissue engineering. Nat. Mater., 2005, 4(7): 518−524
10   C. M. Cheah, C. K. Chua, K. F. Leong, S. W. Chua. Development of a tissue engineering scaffold structure library for rapid prototyping. Part 1: Investigation and classification. Int. J. Adv. Manuf. Technol., 2003, 21(4): 291−301
11   C. M. Cheah, C. K. Chua, K. F. Leong, S. W. Chua. Development of a tissue engineering scaffold structure library for rapid prototyping. Part 2: Parametric library and assembly program. Int. J. Adv. Manuf. Technol., 2003, 21(4): 302−312
12   C. M. Cheah, C. K. Chua, K. F. Leong, C. H. Cheong, M. W. Naing. Automatic algorithm for generating complex polyhedral scaffold structures for tissue engineering. Tissue Eng., 2004, 10(3−4): 595−610
13   M. W. Naing, C. K. Chua, K. F. Leong, Y. Wang. Fabrication of customised scaffolds using computer-aided design and rapid prototyping techniques. Rapid Prototyping J., 2005, 11(4): 249−259
14   K. F. Leong, C. K. Chua, N. Sudarmadji, W. Y. Yeong. Engineering functionally graded tissue engineering scaffolds. J. Mech. Behav. Biomed. Mater., 2008, 1(2): 140−152
15   N. Sudarmadji, C. K. Chua, K. F. Leong. The development of computer-aided system for tissue scaffolds (CASTS) system for functionally graded tissue-engineering scaffolds. Methods Mol. Biol., 2012, 868: 111−123
16   C. K. Chua, N. Sudarmadji, K. F. Leong, S. M. Chou, S. C. Lim, W. M. Firdaus. Process flow for designing functionally graded tissue engineering scaffolds. In: Innovative Developments in Design and Manufacturing—Advanced Research in Virtual and Rapid Prototyping, 2010: 45−49
17   C. K. Chua, K. F. Leong, N. Sudarmadji, M. J. J. Liu, S. M. Chou. Selective laser sintering of functionally graded tissue scaffolds. MRS Bull., 2011, 36(12): 1006−1014
18   S. Cai, J. Xi, C. K. Chua. A novel bone scaffold design approach based on shape function and all-hexahedral mesh refinement. Methods in Molecular Biology, 2012, 868: 45−55
19   N. Yang, Z. Quan, D. Zhang, Y. Tian. Multi-morphology transition hybridization CAD design of minimal surface porous structures for use in tissue engineering. Comput. Aided Design, 2014, 56: 11−21
20   J. Rouwkema, N. C. Rivron, C. A. van Blitterswijk. Vascularization in tissue engineering. Trends Biotechnol., 2008, 26(8): 434−441
21   D. Druecke, Neovascularization of poly(ether ester) block-copolymer scaffolds in vivo: Long-term investigations using intravital fluorescent microscopy. J. Biomed. Mater. Res. A, 2004, 68A(1): 10−18
22   V. Karageorgiou, D. Kaplan. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 2005, 26(27): 5474−5491
23   M. O. Wang, Evaluating 3D-printed biomaterials as scaffolds for vascularized bone tissue engineering. Adv. Mater., 2015, 27(1): 138−144
24   R. Suntornnond, J. An, W. Y. Yeong, C. K. Chua. Hybrid membrane based structure: A novel approach for tissue engineering scaffold. In: The 4th International Conference on Additive Manufacturing and Bio-manufacturing (ICAM-BM 2014). Beijing, China, 2014: 41−42
25   C. K. Chua, K. F. Leong. 3D Printing and Additive Manufacturing: Principles and Applications. Singapore: World Scientific Publishing Company Pte Limited, 2014
26   C. W. Yung, L. Q. Wu, J. A. Tullman, G. F. Payne, W. E. Bentley, T. A. Barbari. Transglutaminase crosslinked gelatin as a tissue engineering scaffold. J. Biomed. Mater. Res. A, 2007, 83A(4): 1039−1046
27   Y. Yan, Direct construction of a three-dimensional structure with cells and hydrogel. J. Bioact. Compat. Pol., 2005, 20(3): 259−269
28   F. P. Melchels, J. Feijen, D. W. Grijpma. A poly(D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials, 2009, 30(23−24): 3801−3809
29   J. Y. Tan, C. K. Chua, K. F. Leong. Indirect fabrication of gelatin scaffolds using rapid prototyping technology. Virtual and Physical Prototyping, 2010, 5(1): 45−53
30   M. J. J. Liu, S. M. Chou, C. K. Chua, B. C. M. Tay, B. K. Ng. The development of silk fibroin scaffolds using an indirect rapid prototyping approach: Morphological analysis and cell growth monitoring by spectral-domain optical coherence tomography. Med. Eng. Phys., 2013, 35(2): 253−262
31   D. Dean, Multiple initiators and dyes for continuous Digital Light Processing (cDLP) additive manufacture of resorbable bone tissue engineering scaffolds: A new method and new material to fabricate resorbable scaffold for bone tissue engineering via continuous Digital Light Processing. Virtual and Physical Prototyping, 2014, 9(1): 3−9
32   C. Wu, 3D-printing of highly uniform CaSiO3 ceramic scaffolds: Preparation, characterization and in vivo osteogenesis. J. Mater. Chem., 2012, 22(24): 12288−12295
33   D. W. Hutmacher, T. Schantz, I. Zein, K. W. Ng, S. H. Teoh, K. C. Tan. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J. Biomed. Mater. Res., 2001, 55(2): 203−216
34   G. Yu, Y. Ding, D. Li, Y. Tang. A low cost cutter-based paper lamination rapid prototyping system. Int. J. Mach. Tools Manuf., 2003, 43(11): 1079−1086
35   D. Ahn, J. H. Kweon, J. Choi, S. Lee. Quantification of surface roughness of parts processed by laminated object manufacturing. J. Mater. Process. Technol., 2012, 212(2): 339−346
36   G. S. Kelly, M. S. Jr Just, S. G. Advani, J. W. Gillespie. Energy and bond strength development during ultrasonic consolidation. J. Mater. Process. Technol., 2014, 214(8): 1665−1672
37   Z. H. Liu, D. Q. Zhang, S. L. Sing, C. K. Chua, L. E. Loh. Interfacial characterization of SLM parts in multi-material processing: Metallurgical diffusion between 316L stainless steel and C18400 copper alloy. Mater. Charact., 2014, 94: 116−125
38   W. Y. Yeong, Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomater., 2010, 6(6): 2028−2034
39   C. Guo, W. Ge, F. Lin. Effects of scanning parameters on material deposition during Electron Beam Selective Melting of Ti-6Al-4V powder. J. Mater. Process. Technol., 2015, 217: 148−157
40   T. Durejko, M. Ziętala, W. Polkowski, T. Czujko. Thin wall tubes with Fe3Al/SS316L graded structure obtained by using laser engineered net shaping technology. Mater. Des., 2014, 63: 766−774
41   M. Gharbi, Influence of various process conditions on surface finishes induced by the direct metal deposition laser technique on a Ti-6Al-4V alloy. J. Mater. Process. Technol., 2013, 213(5): 791−800
42   M. Castilho, Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects. Biofabrication, 2014, 6(1): 015006
43   A. Butscher, Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds. Acta Biomater., 2012, 8(1): 373−385
44   A. Butscher, M. Bohner, N. Doebelin, S. Hofmann, R. Müller. New depowdering-friendly designs for three-dimensional printing of calcium phosphate bone substitutes. Acta Biomater., 2013, 9(11): 9149−9158
45   K. C. Ang, K. F. Leong, C. K. Chua, M. Chandrasekaran. Compressive properties and degradability of poly(ε-caprolatone)/hydroxyapatite composites under accelerated hydrolytic degradation. J. Biomed. Mater. Res. A, 2007, 80A(3): 655−660
46   C. M. Cheah, K. F. Leong, C. K. Chua, K. H. Low, H. S. Quek. Characterization of microfeatures in selective laser sintered drug delivery devices. Proc. Inst. Mech. Eng. H, 2002, 216(6): 369−383
47   K. F. Leong, C. K. Chua, W. S. Gui, Verani. Building porous biopolymeric microstructures for controlled drug delivery devices using selective laser sintering. Int. J. Adv. Manuf. Technol., 2006, 31(5−6): 483−489
48   K. F. Leong, F. E. Wiria, C. K. Chua, S. H. Li. Characterization of a poly-ε-caprolactone polymeric drug delivery device built by selective laser sintering. Biomed Mater Eng., 2007, 17(3): 147−157
49   K. H. Tan, Selective laser sintering of biocompatible polymers for applications in tissue engineering. Biomed Mater Eng., 2005, 15(1−2): 113−124
50   R. L. Simpson, Development of a 95/5 poly(L-lactide-co-glycolide)/hydroxylapatite and ε-tricalcium phosphate scaffold as bone replacement material via selective laser sintering. J. Biomed. Mater. Res. B Appl. Biomater., 2008, 84B(1): 17−25
51   K. H. Tan, Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends. Biomaterials, 2003, 24(18): 3115−3123
52   K. H. Tan, C. K. Chua, K. F. Leong, M. W. Naing, C. M. Cheah. Fabrication and characterization of three-dimensional poly(ether-ether-ketone)/-hydroxyapatite biocomposite scaffolds using laser sintering. Proc. Inst. Mech. Eng. H, 2005, 219(3): 183−194
53   C. K. Chua, K. F. Leong, K. H. Tan, F. E. Wiria, C. M. Cheah. Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defects. J. Mater. Sci. Mater. Med., 2004, 15(10): 1113−1121
54   F. E. Wiria, C. K. Chua, K. F. Leong, Z. Y. Quah, M. Chandrasekaran, M. W. Lee. Improved biocomposite development of poly(vinyl alcohol) and hydroxyapatite for tissue engineering scaffold fabrication using selective laser sintering. J. Mater. Sci. Mater. Med., 2008, 19(3): 989−996
55   F. E. Wiria, K. F. Leong, C. K. Chua, Y. Liu. Poly-ε-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomater., 2007, 3(1): 1−12
56   F. E. Wiria, N. Sudarmadji, K. F. Leong, C. K. Chua, E. W. Chng, C. C. Chan. Selective laser sintering adaptation tools for cost effective fabrication of biomedical prototypes. Rapid Prototyping J., 2010, 16(2): 90−99
57   G. Kim, J. Son, S. Park, W. Kim. Hybrid process for fabricating 3D hierarchical scaffolds combining rapid prototyping and electrospinning. Macromol. Rapid Commun., 2008, 29(19): 1577−1581
58   S. H. Park, U. H. Koh, M. Kim, D. Y. Yang, K. Y. Suh, J. H. Shin. Hierarchical multilayer assembly of an ordered nanofibrous scaffold via thermal fusion bonding. Biofabrication, 2014, 6(2): 024107
59   C. H. Chen, V. B. H. Shyu, J. P. Chen, M. Y. Lee. Selective laser sintered poly-ε-caprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering. Biofabrication, 2014, 6(1): 015004
60   C. K. Chua, M. W. Naing, K. F. Leong, C. M. Cheah. Novel method for producing polyhedra scaffolds in tissue engineering. In: Virtual Modeling and Rapid Manufacturing—Advanced Research in Virtual and Rapid Prototyping, 2003: 633−640
61   H. S. Ramanath, C. K. Chua, K. F. Leong, K. D. Shah. Melt flow behaviour of poly-ε-caprolactone in fused deposition modelling. J. Mater. Sci. Mater. Med., 2008, 19(7): 2541−2550
62   F. E. Wiria, K. F. Leong, C. K. Chua. Modeling of powder particle heat transfer process in selective laser sintering for fabricating tissue engineering scaffolds. Rapid Prototyping J., 2010, 16(6): 400−410
63   K. C. Ang, K. F. Leong, C. K. Chua, M. Chandrasekaran. Investigation of the mechanical properties and porosity relationships in fused deposition modeling-fabricated porous structures. Rapid Prototyping J., 2006, 12(2): 100−105
64   H. S. Ramanath, M. Chandrasekaran, C. K. Chua, K. F. Leong, K. D. Shah. Modeling of extrusion behavior of biopolymer and composites in fused deposition modeling. In: Key Engineering Materials, 2007, 334−335: 1241−1244
65   N. Sudarmadji, J. Y. Tan, K. F. Leong, C. K. Chua, Y. T. Loh. Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedral for functionally graded scaffolds. Acta Biomater., 2011, 7(2): 530−537
66   C. E. Misch, Z. Qu, M. W. Bidez. Mechanical properties of trabecular bone in the human mandible: Implications for dental implant treatment planning and surgical placement. J. Oral Maxillofac. Surg., 1999, 57(6): 700−706, discussion 706−708
67   C. K. Chua, M. J. J. Liu, S. M. Chou. Additive manufacturing-assisted scaffold-based tissue engineering. In: Innovative Developments in Virtual and Physical Prototyping—Proceedings of the 5th International Conference on Advanced Research and Rapid Prototyping, 2012: 13−21
68   W. Y. Yeong, C. K. Chua, K. F. Leong, M. Chandrasekaran, M. W. Lee. Indirect fabrication of collagen scaffold based on inkjet printing technique. Rapid Prototyping J., 2006, 12(4): 229−237
69   W. Y. Yeong, C. K. Chua, K. F. Leong, M. Chandrasekaran, M. W. Lee. Comparison of drying methods in the fabrication of collagen scaffold via indirect rapid prototyping. J. Biomed. Mater. Res. B Appl. Biomater., 2007, 82B(1): 260−266
70   J. Y. Tan, C. K. Chua, K. F. Leong. Indirect fabrication of tissue engineering scaffolds using rapid prototyping and a foaming process. In: Innovative Developments in Design and Manufacturing—Advanced Research in Virtual and Rapid Prototyping, 2010: 51−57
71   J. Y. Tan, C. K. Chua, K. F. Leong. Fabrication of channeled scaffolds with ordered array of micro-pores through microsphere leaching and indirect Rapid Prototyping technique. Biomed. Microdevices, 2013, 15(1): 83−96
72   C. H. Chen, J. M. J. Liu, C. K. Chua, S. M. Chou, V. B. H. Shyu, J. P. Chen. Cartilage tissue engineering with silk fibroin scaffolds fabricated by indirect additive manufacturing technology. Materials (Basel), 2014, 7(3): 2104−2119
73   V. Mironov, V. Kasyanov, R. R. Markwald. Organ printing: From bioprinter to organ biofabrication line. Curr. Opin. Biotechnol., 2011, 22(5): 667−673
74   M. Bartnikowski, T. J. Klein, F. P. W. Melchels, M. A. Woodruff. Effects of scaffold architecture on mechanical characteristics and osteoblast response to static and perfusion bioreactor cultures. Biotechnol. Bioeng., 2014, 111(7): 1440−1451
75   M. Ghaedi, J. J. Mendez, P. F. Bove, A. Sivarapatna, M. S. B. Raredon, L. E. Niklason. Alveolar epithelial differentiation of human induced pluripotent stem cells in a rotating bioreactor. Biomaterials, 2014, 35(2): 699−710
76   T. W. G. M. Spitters, A dual flow bioreactor with controlled mechanical stimulation for cartilage tissue engineering. Tissue Eng. Part C Methods, 2013, 19(10): 774−783
77   L. Dan, C. K. Chua, K. F. Leong. Fibroblast response to interstitial flow: A state-of-the-art review. Biotechnol. Bioeng., 2010, 107(1): 1−10
78   D. Liu, C. K. Chua, K. F. Leong. A mathematical model for fluid shear-sensitive 3D tissue construct development. Biomech. Model. Mechanobiol., 2013, 12(1): 19−31
79   B. C. M. Tay, C. Y. Fu, B. K. Ng, J. M. J. Liu, S. M. Chou, C. K. Chua. Monitoring cell proliferation in silk fibroin scaffolds using spectroscopic optical coherence tomography. Microw. Opt. Technol. Lett., 2013, 55(11): 2587−2594
80   C. K. Chua, W. Y. Yeong. Bioprinting: Principles and Applications. Singapore: World Scientific Publishing Company Pte Limited, 2014
81   V. Mironov, T. Boland, T. Trusk, G. Forgacs, R. R. Markwald. Organ printing: Computer-aided jet-based 3D tissue engineering. Trends Biotechnol., 2003, 21(4): 157−161
82   V. Mironov, V. Kasyanov, C. Drake, R. R. Markwald. Organ printing: Promises and challenges. Regen. Med., 2008, 3(1): 93−103
83   V. Mironov, R. P. Visconti, V. Kasyanov, G. Forgacs, C. J. Drake, R. R. Markwald. Organ printing: Tissue spheroids as building blocks. Biomaterials, 2009, 30(12): 2164−2174
84   J. An, C. K. Chua, T. Yu, H. Li, L. P. Tan. Advanced nanobiomaterial strategies for the development of organized tissue engineering constructs. Nanomedicine (Lond), 2013, 8(4): 591−602
85   Alec. Russian scientists to unveil 3D bioprinted transplantable organ in March 2015. 2014-<month>11</month>-<day>10</day>. http://www.3ders.org/articles/20141110-russian-scientists-to-unveil-3d-bioprinted-transplantable-organ-in-march-2015.html
86   S. V. Murphy, A. Atala. 3D bioprinting of tissues and organs. Nat. Biotechnol., 2014, 32(8): 773−785
87   D. B. Kolesky, R. L. Truby, A. S. Gladman, T. A. Busbee, K. A. Homan, J. A. Lewis. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater., 2014, 26(19): 3124−3130
88   N. E. Fedorovich, Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng. Part C Methods, 2012, 18(1): 33−44
89   J. M. Lee, W. Y. Yeong. A preliminary model of time-pressure dispensing system for bioprinting based on printing and material parameters. In: Virtual and Physical Prototyping, 2014: 1−6
90   C. Cvetkovic, Three-dimensionally printed biological machines powered by skeletal muscle. Proc. Natl. Acad. Sci. U.S.A., 2014, 111(28): 10125−10130
91   S. Tibbits. 4D printing: Multi-material shape change. Architectural Design, 2014, 84(1): 116−121
92   Q. Ge, C. K. Dunn, H. J. Qi, M. L. Dunn. Active origami by 4D printing. In: Smart Materials and Structures, 2014, 23: 094007−094022
93   E. Pei. 4D printing—Revolution or fad? Assembly Automation, 2014, 34(2): 123−127
94   E. M. Teoh, C. K. Chua, Y. Liu, D. Q. Zhang. Four dimensional (4D) printing using polyjet technology. In: The 4th International Conference on Additive Manufacturing and Bio-manufacturing (ICAM-BM 2014). Beijing, China, 2014: 35−36
95   R. W. Esmond, G. C. Phero. The additive manufacturing revolution and the corresponding legal landscape. In: Virtual and Physical Prototyping, 2014: 1−4
Related
[1] Shutian Liu, Quhao Li, Junhuan Liu, Wenjiong Chen, Yongcun Zhang. A Realization Method for Transforming a Topology Optimization Design into Additive Manufacturing Structures[J]. Engineering, 2018, 4(2): 277 -285 .
[2] Quy Bau Nguyen, Mui Ling Sharon Nai, Zhiguang Zhu, Chen-Nan Sun, Jun Wei, Wei Zhou. Characteristics of Inconel Powders for Powder-Bed Additive Manufacturing[J]. Engineering, 2017, 3(5): 695 -700 .
[3] Pinlian Han. Additive Design and Manufacturing of Jet Engine Parts[J]. Engineering, 2017, 3(5): 648 -652 .
[4] Kan Wang, Chia-Che Ho, Chuck Zhang, Ben Wang. A Review on the 3D Printing of Functional Structures for Medical Phantoms and Regenerated Tissue and Organ Applications[J]. Engineering, 2017, 3(5): 653 -662 .
[5] Patcharapit Promoppatum, Shi-Chune Yao, P. Chris Pistorius, Anthony D. Rollett. A Comprehensive Comparison of the Analytical and Numerical Prediction of the Thermal History and Solidification Microstructure of Inconel 718 Products Made by Laser Powder-Bed Fusion[J]. Engineering, 2017, 3(5): 685 -694 .
[6] Wentao Yan, Ya Qian, Weixin Ma, Bin Zhou, Yongxing Shen, Feng Lin. Modeling and Experimental Validation of the Electron Beam Selective Melting Process[J]. Engineering, 2017, 3(5): 701 -707 .
[7] Dongdong Gu, Chenglong Ma, Mujian Xia, Donghua Dai, Qimin Shi. A Multiscale Understanding of the Thermodynamic and Kinetic Mechanisms of Laser Additive Manufacturing[J]. Engineering, 2017, 3(5): 675 -684 .
[8] Zhen Zhang, Peng Yan, Guangbo Hao. A Large Range Flexure-Based Servo System Supporting Precision Additive Manufacturing[J]. Engineering, 2017, 3(5): 708 -715 .
[9] Amelia Yilin Lee, Jia An, Chee Kai Chua. Two-Way 4D Printing: A Review on the Reversibility of 3D-Printed Shape Memory Materials[J]. Engineering, 2017, 3(5): 663 -674 .
[10] Shiying Li, Tianmei Qian, Xinghui Wang, Jie Liu, Xiaosong Gu. Noncoding RNAs and Their Potential Therapeutic Applications in Tissue Engineering[J]. Engineering, 2017, 3(1): 3 -15 .
[11] Yu Liu, Guangdong Zhou, Yilin Cao. Recent Progress in Cartilage Tissue Engineering—Our Experience and Future Directions[J]. Engineering, 2017, 3(1): 28 -35 .
[12] Alessandro Pistone, Daniela Iannazzo, Claudia Espro, Signorino Galvagno, Anna Tampieri, Monica Montesi, Silvia Panseri, Monica Sandri. Tethering of Gly-Arg-Gly-Asp-Ser-Pro-Lys Peptides on Mg-Doped Hydroxyapatite[J]. Engineering, 2017, 3(1): 55 -59 .
[13] Anders Clausen, Niels Aage, Ole Sigmund. Exploiting Additive Manufacturing Infill in Topology Optimization for Improved Buckling Load[J]. Engineering, 2016, 2(2): 250 -257 .
[14] Zhi Cui,Baofeng Yang,Ren-Ke Li. Application of Biomaterials in Cardiac Repair and Regeneration[J]. Engineering, 2016, 2(1): 141 -148 .
[15] Jun Yang,Yang Yang,Zhizhu He,Bowei Chen,Jing Liu. A Personal Desktop Liquid-Metal Printer as a Pervasive Electronics Manufacturing Tool for Society in the Near Future[J]. Engineering, 2015, 1(4): 506 -512 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
京ICP备11030251号-2

 Engineering