Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2015, Vol. 1 Issue (2) : 269 -274
Research |
Bioprinting-Based High-Throughput Fabrication of Three-Dimensional MCF-7 Human Breast Cancer Cellular Spheroids
Kai Ling1,2,Guoyou Huang2,3,Juncong Liu2,Xiaohui Zhang2,3,Yufei Ma2,3,Tianjian Lu2,(),Feng Xu2,3,()
1. State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China
2. Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
3. The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China

Cellular spheroids serving as three-dimensional (3D) in vitro tissue models have attracted increasing interest for pathological study and drug-screening applications. Various methods, including microwells in particular, have been developed for engineering cellular spheroids. However, these methods usually suffer from either destructive molding operations or cell loss and non-uniform cell distribution among the wells due to two-step molding and cell seeding. We have developed a facile method that utilizes cell-embedded hydrogel arrays as templates for concave well fabrication and in situ MCF-7 cellular spheroid formation on a chip. A custom-built bioprinting system was applied for the fabrication of sacrificial gelatin arrays and sequentially concave wells in a high-throughput, flexible, and controlled manner. The ability to achieve in situ cell seeding for cellular spheroid construction was demonstrated with the advantage of uniform cell seeding and the potential for programmed fabrication of tissue models on chips. The developed method holds great potential for applications in tissue engineering, regenerative medicine, and drug screening.

Keywords MCF-7 cellular spheroids      bioprinting      hydrogels      concave wells      tissue on a chip     
Corresponding Authors: Tianjian Lu,Feng Xu   
Just Accepted Date: 30 June 2015   Issue Date: 16 September 2015
E-mail this article
E-mail Alert
Articles by authors
Kai Ling
Guoyou Huang
Juncong Liu
Xiaohui Zhang
Yufei Ma
Tianjian Lu
Feng Xu
Cite this article:   
Kai Ling,Guoyou Huang,Juncong Liu, et al. Bioprinting-Based High-Throughput Fabrication of Three-Dimensional MCF-7 Human Breast Cancer Cellular Spheroids[J]. Engineering, 2015, 1(2): 269 -274 .
URL:     OR
1   T. M. Achilli, J. Meyer, J. R. Morgan. Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opin. Biol. Ther., 2012, 12(10): 1347−1360
2   M. Rimann, U. Graf-Hausner. Synthetic 3D multicellular systems for drug development. Curr. Opin. Biotechnol., 2012, 23(5): 803−809
3   L. Wang, Engineering three-dimensional cardiac microtissues for potential drug screening applications. Curr. Med. Chem., 2014, 21(22): 2497−2509
4   J. Rouwkema, J. de Boer, C. A. van Blitterswijk. Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct. Tissue Eng., 2006, 12(9): 2685−2693
5   E. Fennema, N. Rivron, J. Rouwkema, C. van Blitterswijk, J. de Boer. Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol., 2013, 31(2): 108−115
6   K. Takayama, 3D spheroid culture of hESC/hiPSC-derived hepatocyte-like cells for drug toxicity testing. Biomaterials, 2013, 34(7): 1781−1789
7   P. R. Baraniak, T. C. McDevitt. Scaffold-free culture of mesenchymal stem cell spheroids in suspension preserves multilineage potential. Cell Tissue Res., 2012, 347(3): 701−711
8   A. P. Napolitano, Scaffold-free three-dimensional cell culture utilizing micromolded nonadhesive hydrogels. Biotechniques, 2007, 43(4): 494, 496−500
9   D. M. Dean, J. R. Morgan. Cytoskeletal-mediated tension modulates the directed self-assembly of microtissues. Tissue Eng. Part A, 2008, 14(12): 1989−1997
10   J. Liu, Soft fibrin gels promote selection and growth of tumorigenic cells. Nat. Mater., 2012, 11(8): 734−741
11   J. Friedrich, C. Seidel, R. Ebner, L. A. Kunz-Schughart. Spheroid-based drug screen: Considerations and practical approach. Nat. Protoc., 2009, 4(3): 309−324
12   H. F. Chan, Y. Zhang, Y. P. Ho, Y. L. Chiu, Y. Jung, K. W. Leong. Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment. Sci. Rep., 2013, 3: 3462
13   F. Langenbach, Generation and differentiation of microtissues from multipotent precursor cells for use in tissue engineering. Nat. Protoc., 2011, 6(11): 1726−1735
14   M. Inamori, H. Mizumoto, T. Kajiwara. An approach for formation of vascularized liver tissue by endothelial cell-covered hepatocyte spheroid integration. Tissue Eng. Part A, 2009, 15(8): 2029−2037
15   S. F. Wong, D. Y. No, Y. Y. Choi, D. S. Kim, B. G. Chung, S. H. Lee. Concave microwell based size-controllable hepatosphere as a three-dimensional liver tissue model. Biomaterials, 2011, 32(32): 8087−8096
16   D. Huh, B. D. Matthews, A. Mammoto, M. Montoya-Zavala, H. Y. Hsin, D. E. Ingber. Reconstituting organ-level lung functions on a chip. Science, 2010, 328(5986): 1662−1668
17   D. Huh, Y. S. Torisawa, G. A. Hamilton, H. J. Kim, D. E. Ingber. Microengineered physiological biomimicry: Organs-on-chips. Lab Chip, 2012, 12(12): 2156−2164
18   G. Wang, Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat. Med., 2014, 20(6): 616−623
19   R. A. Rezende, Scalable biofabrication of tissue spheroids for organ printing. Procedia CIRP, 2013, 5: 276−281
20   R. J. Thomas, The effect of three-dimensional co-culture of hepatocytes and hepatic stellate cells on key hepatocyte functions in vitro. Cells Tissues Organs (Print), 2005, 181(2): 67−79
21   Y. C. Tung, A. Y. Hsiao, S. G. Allen, Y. S. Torisawa, M. Ho, S. Takayama. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst, 2011, 136(3): 473−478
22   G. R. Souza, Three-dimensional tissue culture based on magnetic cell levitation. Nat. Nanotechnol., 2010, 5(4): 291−296
23   T. Liu, M. Winter, B. Thierry. Quasi-spherical microwells on superhydrophobic substrates for long term culture of multicellular spheroids and high throughput assays. Biomaterials, 2014, 35(23): 6060−6068
24   S. E. Yeon, Application of concave microwells to pancreatic tumor spheroids enabling anticancer drug evaluation in a clinically relevant drug resistance model. PLoS ONE, 2013, 8(9): e73345
25   L. Kang, M. J. Hancock, M. D. Brigham, A. Khademhosseini. Cell confinement in patterned nanoliter droplets in a microwell array by wiping. J. Biomed. Mater. Res. A, 2010, 93(2): 547−557
26   H. Tekin, M. Anaya, M. D. Brigham, C. Nauman, R. Langer, A. Khademhosseini. Stimuli-responsive microwells for formation and retrieval of cell aggregates. Lab Chip, 2010, 10(18): 2411−2418
27   C. Kim, J. H. Bang, Y. E. Kim, S. H. Lee, J. Y. Kang. On-chip anticancer drug test of regular tumor spheroids formed in microwells by a distributive microchannel network. Lab Chip, 2012, 12(20): 4135−4142
28   C. Kim, 3-Dimensional cell culture for on-chip differentiation of stem cells in embryoid body. Lab Chip, 2011, 11(5): 874−882
29   H. C. Moeller, M. K. Mian, S. Shrivastava, B. G. Chung, A. Khademhosseini. A microwell array system for stem cell culture. Biomaterials, 2008, 29(6): 752−763
30   Y. S. Hwang, B. G. Chung, D. Ortmann, N. Hattori, H. C. Moeller, A. Khademhosseini. Microwell-mediated control of embryoid body size regulates embryonic stem cell fate via differential expression of WNT5a and WNT11. Proc. Natl. Acad. Sci. U.S.A., 2009, 106(40): 16978−16983
31   Y. Xia, G. M. Whitesides. Soft lithography. Annu. Rev. Mater. Sci., 1998, 28(1): 153−184
32   Y. Y. Choi, B. G. Chung, D. H. Lee, A. Khademhosseini, J. H. Kim, S. H. Lee. Controlled-size embryoid body formation in concave microwell arrays. Biomaterials, 2010, 31(15): 4296−4303
33   A. Y. Hsiao, Microfluidic system for formation of PC-3 prostate cancer co-culture spheroids. Biomaterials, 2009, 30(16): 3020−3027
[1] Kan Wang, Chia-Che Ho, Chuck Zhang, Ben Wang. A Review on the 3D Printing of Functional Structures for Medical Phantoms and Regenerated Tissue and Organ Applications[J]. Engineering, 2017, 3(5): 653 -662 .
[2] Jia An, Joanne Ee Mei Teoh, Ratima Suntornnond, Chee Kai Chua. Design and 3D Printing of Scaffolds and Tissues[J]. Engineering, 2015, 1(2): 261 -268 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.