Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2017, Vol. 3 Issue (5) : 596 -607
Research |
Simulating Resin Infusion through Textile Reinforcement Materials for the Manufacture of Complex Composite Structures
Robert S. Pierce1,2,Brian G. Falzon2()
1. Northern Ireland Advanced Composites and Engineering Centre, Belfast BT3 9DZ, UK
2. School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Belfast BT9 5AH, UK

Increasing demand for weight reduction and greater fuel efficiency continues to spur the use of composite materials in commercial aircraft structures. Subsequently, as composite aerostructures become larger and more complex, traditional autoclave manufacturing methods are becoming prohibitively expensive. This has prompted renewed interest in out-of-autoclave processing techniques in which resins are introduced into a reinforcing preform. However, the success of these resin infusion methods is highly dependent upon operator skill and experience, particularly in the development of new manufacturing strategies for complex parts. Process modeling, as a predictive computational tool, aims to address the issues of reliability and waste that result from traditional trial-and-error approaches. Basic modeling attempts, many of which are still used in industry, generally focus on simulating fluid flow through an isotropic porous reinforcement material. However, recent efforts are beginning to account for the multiscale and multidisciplinary complexity of woven materials, in simulations that can provide greater fidelity. In particular, new multi-physics process models are able to better predict the infusion behavior through textiles by considering the effect of fabric deformation on permeability and porosity properties within the reinforcing material. In addition to reviewing previous research related to process modeling and the current state of the art, this paper highlights the recent validation of a multi-physics process model against the experimental infusion of a complex double dome component. By accounting for deformation-dependent flow behavior, the multi-physics process model was able to predict realistic flow behavior, demonstrating considerable improvement over basic isotropic permeability models.

Keywords Composite materials      Textile reinforcement      Draping      Infusion      Numerical modeling     
Corresponding Authors: Brian G. Falzon   
Online First Date: 31 October 2017    Issue Date: 08 November 2017
E-mail this article
E-mail Alert
Articles by authors
Robert S. Pierce
Brian G. Falzon
Cite this article:   
Robert S. Pierce,Brian G. Falzon. Simulating Resin Infusion through Textile Reinforcement Materials for the Manufacture of Complex Composite Structures[J]. Engineering, 2017, 3(5): 596 -607 .
URL:     OR
1   EADS Deutschland GmbH, Corporate Research Center. The research requirements of the transport sectors to facilitate an increased usage of composite materials. Part I?: The composite material research requirements of the aerospace industry . Report. Munchen: EADS Deutschland GmbH, Corporate Research Center. 2004 Jun. Contract No.: G4RT-CT-2001-05054.
2   Soutis C. Fibre reinforced composites in aircraft construction. Prog Aerosp Sci 2005;41(2):143–51
doi: 10.1016/j.paerosci.2005.02.004
3   Deo R, Starnes J, Holzwart R. Low-cost composite materials and structures for aircraft applications. Report. Hampton: NASA Langley Research Center; 2003 Oct. Report No.: 20030097981.
4   Roeseler WG, Sarh B, Kismarton MU. Composite structures: The first 100 years. In: Proceedings of the 16th International Conference on Composite Materials; 2007 Jul 9; Kyoto, Japan; 2007. p. 1–10.
5   Gardiner G. Resin-infused MS-21 wings and wingbox. High Performance Composites 2014;22(1):29.
6   Poe CC, Dexter HB, Raju IS. Review of the NASA textile composites research. J Aircr 1999;36(5):876–84
doi: 10.2514/2.2521
7   Adumitroaie A, Barbero EJ. Beyond plain weave fabrics—II. Mechanical properties. Compos Struct 2011;93(5):1449–62
doi: 10.1016/j.compstruct.2010.11.016
8   Williams C, Summerscales J, Grove S. Resin infusion under flexible tooling (RIFT): A review. Compos Part A Appl Sci Manuf 1996;27(7):517–24
doi: 10.1016/1359-835X(96)00008-5
9   Long AC , editor. Composites forming technologies.Cambridge: Woodhead Publishing; 2007.
10   [Smith P, Rudd CD, Long AC. The effect of shear deformation on the processing and mechanical properties of aligned reinforcements. Compos Sci Technol 1997;57(3):327–44
doi: 10.1016/S0266-3538(96)00132-7
11   Lomov SV, Huysmans G, Luo Y, Parnas RS, Prodromou A, Verpoest I, et al.Textile composites: Modeling strategies. Compos Part A Appl Sci Manuf 2001;32(10):1379–94
doi: 10.1016/S1359-835X(01)00038-0
12   Verleye B, Lomov SV, Long A, Verpoest I, Roose D. Permeability prediction for the meso-macro coupling in the simulation of the impregnation stage of resin transfer moulding. Compos Part A Appl Sci Manuf 2010;41(1):29–35
doi: 10.1016/j.compositesa.2009.06.011
13   Wang J, Page JR, Paton R. Experimental investigation of the draping properties of reinforcement fabrics. Compos Sci Technol 1998;58(2):229–37
doi: 10.1016/S0266-3538(97)00115-2
14   Flores FG, Oñate E. Applications of a rotation-free triangular element for finite strain analysis of thin shells and membranes. In: Oñate E, Kröplin B, editors Textile composites and inflatable structures. Dordrecht: Springer; 2005. p. 69–88.
15   Ten Thije RHW, Akkerman R. A multi-layer triangular membrane finite element for the forming simulation of laminated composites. Compos Part A Appl Sci Manuf 2009;40(6–7):739–53
doi: 10.1016/j.compositesa.2009.03.004
16   Boisse P, Gasser A, Hivet G. Analyses of fabric tensile behaviour: Determination of the biaxial tension-strain surfaces and their use in forming simulations. Compos Part A Appl Sci Manuf 2001;32(10):1395–414
doi: 10.1016/S1359-835X(01)00039-2
17   Gasser A, Boisse P, Hanklar S. Mechanical behaviour of dry fabric reinforcements. 3D simulations versus biaxial tests. Comput Mater Sci 2000;17(1):7–20
doi: 10.1016/S0927-0256(99)00086-5
18   Boisse P, Zouari B, Daniel JL. Importance of in-plane shear rigidity in finite element analyses of woven fabric composite preforming. Compos Part A Appl Sci Manuf 2006;37(12):2201–12
doi: 10.1016/j.compositesa.2005.09.018
19   ASTM International. ASTM D5035-11 Standard test method for breaking force and elongation of textile fabrics (strip method). West Conshohocken: ASTM International; 201 5.
20   Kawabata S. The standardization and analysis of hand evaluation. Osaka: Osaka Tiger Printing Co., Ltd; 1980.
21   Potluri P, Perez Ciurezu DA, Ramgulam RB. Measurement of meso-scale shear deformations for modeling textile composites. Compos Part A Appl Sci Manuf 2006;37(2):303–14
doi: 10.1016/j.compositesa.2005.03.032
22   Culpin MF. The shearing of fabrics: A novel approach. J Textil Inst 1979;70(3):81–8
doi: 10.1080/00405007908631522
23   Harrison P, Clifford MJ, Long AC. Shear characterization of viscous woven textile composites: A comparison between picture frame and bias extension experiments. Compos Sci Technol 2004;64(10–11):1453–65
doi: 10.1016/j.compscitech.2003.10.015
24   Harrison P, Abdiwi F, Guo Z, Potluri P, Yu WR. Characterising the shear-tension coupling and wrinkling behaviour of woven engineering fabrics. Compos Part A Appl Sci Manuf 2012;43(6):903–14
doi: 10.1016/j.compositesa.2012.01.024
25   Cao J, Akkerman R, Boisse P, Chen J, Cheng HS, de Graaf EF, et al.Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results. Compos Part A Appl Sci Manuf 2008;39(6):1037–53
doi: 10.1016/j.compositesa.2008.02.016
26   D E e Bilbao D, Soulat G, Hivet. Experimental study of bending behaviour of reinforcements . Exp Mech 2009;50(3):333–51
doi: 10.1007/s11340-009-9234-9
27   Syerko E, Comas-Cardona S, Binetruy C. Models of mechanical properties/behavior of dry fibrous materials at various scales in bending and tension: A review. Compos Part A Appl Sci Manuf 2012;43(8):1365–88
doi: 10.1016/j.compositesa.2012.03.012
28   Mack C, Taylor HM. The fitting of woven cloth to surfaces. J Textil Inst Trans 1956;47(9):T477–88
doi: 10.1080/19447027.1956.10750433
29   Van Der Weeën F. Algorithms for draping fabrics on doubly-curved surfaces. Int J Numer Methods Eng 1991;31(7):1415–26
doi: 10.1002/nme.1620310712
30   Breen DE, House DH, Wozny MJ. Predicting the drape of woven cloth using interacting particles. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques; 1994 Jul 24–29; Orlando, USA. New York: ACM; 1994. p. 365–72
doi: 10.1145/192161.192259
31   Dong L, Lekakou C, Bader MG. Processing of composites: Simulations of the draping of fabrics with updated material behaviour law. J Compos Mater 2001;35(2):138–63
doi: 10.1177/002199801772661975
32   Peng XQ, Cao J. A continuum mechanics-based non-orthogonal constitutive model for woven composite fabrics. Compos Part A Appl Sci Manuf 2005;36(6):859–74
doi: 10.1016/j.compositesa.2004.08.008
33   Khan MA, Mabrouki T, Vidal-Sallé E, Boisse P. Numerical and experimental analyses of woven composite reinforcement forming using a hypoelastic behaviour. Application to the double dome benchmark. J Mater Process Technol 2010;210(2):378–88
doi: 10.1016/j.jmatprotec.2009.09.027
34   T RHW en Thije R, Akkerman J, Huétink. Large deformation simulation of anisotropic material using an updated Lagrangian finite element method. Comput Methods Appl Mech Eng 2007;196(33–34):3141–50
doi: 10.1016/j.cma.2007.02.010
35   Badel P, Gauthier S, Vidal-Sallé E, Boisse P. Rate constitutive equations for computational analyses of textile composite reinforcement mechanical behaviour during forming. Compos Part A Appl Sci Manuf 2009;40(8):997–1007
doi: 10.1016/j.compositesa.2008.04.015
36   Yu WR, Pourboghrat F, Chung K, Zampaloni M, Kang TJ. Non-orthogonal constitutive equation for woven fabric reinforced thermoplastic composites. Compos Part A Appl Sci Manuf 2002;33(8):1095–105
doi: 10.1016/S1359-835X(02)00053-2
37   Xue P, Peng X, Cao J. A non-orthogonal constitutive model for characterizing woven composites. Compos Part A Appl Sci Manuf 2003;34(2):183–93
doi: 10.1016/S1359-835X(02)00052-0
38   Yu WR, Harrison P, Long A. Finite element forming simulation for non-crimp fabrics using a non-orthogonal constitutive equation. Compos Part A Appl Sci Manuf 2005;36(8):1079–93
doi: 10.1016/j.compositesa.2005.01.007
39   Peng X, Ding F. Validation of a non-orthogonal constitutive model for woven composite fabrics via hemispherical stamping simulation. Compos Part A Appl Sci Manuf 2011;42(4):400–7
doi: 10.1016/j.compositesa.2010.12.014
40   Peng X, Rehman ZU. Textile composite double dome stamping simulation using a non-orthogonal constitutive model. Compos Sci Technol 2011;71(8):1075–81
doi: 10.1016/j.compscitech.2011.03.010
41   Jauffrès D, Sherwood JA, Morris CD, Chen J. Discrete mesoscopic modeling for the simulation of woven-fabric reinforcement forming. Int J Mater Form 2010;3(S uppl 2 ):1205–16
doi: 10.1007/s12289-009-0646-y
42   Durville D. Simulation of the mechanical behaviour of woven fabrics at the scale of fibers. Int J Mater Form 2010;3(S uppl 2 ):1241–51
doi: 10.1007/s12289-009-0674-7
43   Badel P, Vidal-Sallé E, Boisse P. Computational determination of in-plane shear mechanical behaviour of textile composite reinforcements. Comput Mater Sci 2007;40(4):439–48
doi: 10.1016/j.commatsci.2007.01.022
44   Hamila N, Boisse P. A meso-macro three node finite element for draping of textile composite preforms. Appl Compos Mater 2007;14(4):235–50
doi: 10.1007/s10443-007-9043-1
45   Hamila N, Boisse P, Sabourin F, Brunet M. A semi-discrete shell finite element for textile composite reinforcement forming simulation. Int J Numer Methods Eng 2009;79(12):1443–66
doi: 10.1002/nme.2625
46   Allaoui S, Boisse P, Chatel S, Hamila N, Hivet G, Soulat D, et al.Experimental and numerical analyses of textile reinforcement forming of a tetrahedral shape. Compos Part A Appl Sci Manuf 2011;42(6):612–22
doi: 10.1016/j.compositesa.2011.02.001
47   Boisse P, Aimène Y, Dogui A, Dridi S, Gatouillat S, Hamila N, et al.Hypoelastic, hyperelastic, discrete and semi-discrete approaches for textile composite reinforcement forming. Int J Mater Form 2010;3(S uppl 2 ):1229–40
doi: 10.1007/s12289-009-0664-9
48   Advani SG, Simacek P. Liquid composite molding: Role of modeling and simulation in process advancement. In: Proceeding of the 20th International Conference on Composite Materials; 2015 Jul 19–24; Copenhagen: Denmark; 2015.
49   Šimáček P, Advani SG. Desirable features in mold filling simulations for liquid composite molding processes. Polym Compos 2004;25(4):355–67
doi: 10.1002/pc.20029
50   Weitzenböck JR, Shenoi RA, Wilson PA. Radial flow permeability measurement. Part A: Theory. Compos Part A Appl Sci Manuf 1999;30(6):781–96
doi: 10.1016/S1359-835X(98)00183-3
51   Sharma S, Siginer DA. Permeability measurement methods in porous media of fiber reinforced composites. Appl Mech Rev 2010;63(2):020802
doi: 10.1115/1.4001047
52   Arbter R, Beraud JM, Binetruy C, Bizet L, Bréard J, Comas-Cardona S, et al.Experimental determination of the permeability of textiles: A benchmark exercise. Compos Part A Appl Sci Manuf 2011;42(9):1157–68
doi: 10.1016/j.compositesa.2011.04.021
53   Vernet N, Ruiz E, Advani S, Alms JB, Aubert M, Barburski M, et al.Experimental determination of the permeability of engineering textiles: Benchmark II. Compos Part A Appl Sci Manuf 2014;61:172–84
doi: 10.1016/j.compositesa.2014.02.010
54   Park CH, Lebel A, Saouab A, Bréard J, Lee W. Modeling and simulation of voids and saturation in liquid composite molding processes. Compos Part A Appl Sci Manuf 2011;42(6):658–68
doi: 10.1016/j.compositesa.2011.02.005
55   Hoes K, Dinescu D, Sol H, Parnas RS, Lomov S. Study of nesting induced scatter of permeability values in layered reinforcement fabrics. Compos Part A Appl Sci Manuf 2004;35(12):1407–18
doi: 10.1016/j.compositesa.2004.05.004
56   Endruweit A, Long AC. Influence of stochastic variations in the fiber spacing on the permeability of bi-directional textile fabrics. Compos Part A Appl Sci Manuf 2006;37(5):679–94
doi: 10.1016/j.compositesa.2005.08.003
57   Lundström TS, Stenberg R, Bergström R, Partanen H, Birkeland PA. In-plane permeability measurements: A nordic round-robin study. Compos Part A Appl Sci Manuf 2000;31(1):29–43
doi: 10.1016/S1359-835X(99)00058-5
58   Luo Y, Verpoest I, Hoes K, Vanheule M, Sol H, Cardon A. Permeability measurement of textile reinforcements with several test fluids. Compos Part A Appl Sci Manuf 2001;32(10):1497–504
doi: 10.1016/S1359-835X(01)00049-5
59   Endruweit A, McGregor P, Long AC, Johnson MS. Influence of the fabric architecture on the variations in experimentally determined in-plane permeability values. Compos Sci Technol 2006;66(11–12):1778–92
doi: 10.1016/j.compscitech.2005.10.031
60   Ahn SH, Lee WI, Springer GS. Measurement of the three-dimensional permeability of fiber preforms using embedded fiber optic sensors. J Compos Mater 1995;29(6):714–33
doi: 10.1177/002199839502900602
61   Carman PC. Flow of gases through porous media. New York: Academic Press; 1956.
62   Gebart BR. Permeability of unidirectional reinforcements for RTM. J Compos Mater 1992;26(8):1100–33
doi: 10.1177/002199839202600802
63   Yu B, Lee LJ. A simplified in-plane permeability model for textile fabrics. Polym Compos 2000;21(5):660–85
doi: 10.1002/pc.10221
64   Dungan FD, Senoguz MT, Sastry AM, Faillaci DA. Simulations and experiments on low-pressure permeation of fabrics: Part I—3D modeling of unbalanced fabric. J Compos Mater 2001;35(14):1250–84.
65   Belov EB, Lomov SV, Verpoest I, Peters T, Roose D, Parnas RS, et al.Modeling of permeability of textile reinforcements: Lattice Boltzmann method. Compos Sci Technol 2004;64(7–8):1069–80
doi: 10.1016/j.compscitech.2003.09.015
66   Dunkers JP, Phelan FR, Zimba CG, Fly KM, Sanders DP, et al.The prediction of permeability for an epoxy/E-glass compsoite using optical coherence tomographic images. Polym Compos 2001;22(6):803–14
doi: 10.1002/pc.10582
67   Nedanov PB, Advani SG. Numerical computation of the fiber preform permeability tensor by the homogenization method. Polym Compos 2002;23(5):758–70
doi: 10.1002/pc.10474
68   Takano N, Zako M, Okazaki T, Terada K. Microstructure-based evaluation of the influence of woven architecture on permeability by asymptotic homogenization theory. Compos Sci Technol 2002;62(10–11):1347–56
doi: 10.1016/S0266-3538(02)00076-3
69   Verleye B, Croce R, Griebel M, Klitz M, Lomov SV, Morren G, et al.Permeability of textile reinforcements: Simulation, influence of shear and validation. Compos Sci Technol 2008;68(13):2804–10
doi: 10.1016/j.compscitech.2008.06.010
70   Loix F, Badel P, Orgéas L, Geindreau C, Boisse P. Woven fabric permeability: From textile deformation to fluid flow mesoscale simulations. Compos Sci Technol 2008;68(7–8):1624–30
doi: 10.1016/j.compscitech.2008.02.027
71   Wong CC, Long AC, Sherburn M, Robitaille F, Harrison P, Rudd CD. Comparisons of novel and efficient approaches for permeability prediction based on the fabric architecture. Compos Part A Appl Sci Manuf 2006;37(6):847–57
doi: 10.1016/j.compositesa.2005.01.020
72   Lomov SV, Verpoest I, Peeters T, Roose D, Zako M. Nesting in textile laminates: Geometrical modeling of the laminate. Compos Sci Technol 2003;63(7):993–1007
doi: 10.1016/S0266-3538(02)00318-4
73   Vanaerschot A, Cox BN, Lomov SV, Vandepitte D. Stochastic multi-scale modeling of textile composites based on internal geometry variability. Comput Struc 2013;122:55–64
doi: 10.1016/j.compstruc.2012.10.026
74   Hammami A, Trochu F, Gauvin R, Wirth S. Directional permeability measurement of deformed reinforcement. J Reinf Plast Compos 1996;15(6):552–62
doi: 10.1177/073168449601500601
75   Slade J, Sozer EM, Advani SG. Fluid impregnation of deformed preforms. J Reinf Plast Compos 2000;19(7):552–68
doi: 10.1177/073168440001900703
76   Lai CL, Young WB. Model resin permeation of fiber reinforcements after shear deformation. Polym Compos 1997;18(5):642–8
doi: 10.1002/pc.10315
77   Trochu F, Gauvin R. Limitations of a boundary-fitted finite difference method for the simulation of the resin transfer molding proccess. J Reinf Plast Compos 1992;11(7):772–86
doi: 10.1177/073168449201100704
78   Trochu F, Ruiz E, Achim V, Soukane S. Advanced numerical simulation of liquid composite molding for process analysis and optimization. Compos Part A Appl Sci Manuf 2006;37(6):890–902
doi: 10.1016/j.compositesa.2005.06.003
79   Soukane S, Trochu F. Application of the level set method to the simulation of resin transfer molding. Compos Sci Technol 2006;66(7–8):1067–80
doi: 10.1016/j.compscitech.2005.03.001
80   Bruschke MV, Advani SG. A finite element/control volume approach to mold filling in anisotropic porous media. Polym Compos 1990;11(6):398–405
doi: 10.1002/pc.750110613
81   Kang MK, Lee WI, Hahn HT. Analysis of vacuum bag resin transfer molding process. Compos Part A Appl Sci Manuf 2001;32(11):1553–60
doi: 10.1016/S1359-835X(01)00012-4
82   Ngo ND, Mohan RV, Chung PW, Tamma KK, Shires DR. Recent developments encompassing non-isothermal/isothermal liquid composite molding process modeling/analysis: Physically accurate, computationally effective, and affordable simulations and validations. J Thermoplast Compos Mater 1998;11(6):493–532
doi: 10.1177/089270579801100602
83   Phelan FR. Simulation of the injection process in resin transfer molding. Polym Compos 1997;18(4):460–76
doi: 10.1002/pc.10298
84   Luz FF, Amico SC, Souza JÁ, Barbosa ES, Barbosa de Lima AG. Resin transfer molding process: Fundamentals, numerical computation and experiments. In: Delgado JMPQ, Barbosa de Lima AG, da Silva MV, editors Numerical analysis of heat and mass transfer in porous media . Berlin: Springer-Verlag; 2012, p. 121–51
doi: 10.1007/978-3-642-30532-0_5
85   Park J, Kang MK. A numerical simulation of the resin film infusion process. Compos Struct 2003;60(4):431–7
doi: 10.1016/S0263-8223(03)00021-7
86   Hirt C, Nichols B. Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 1981;39(1):201–25
doi: 10.1016/0021-9991(81)90145-5
87   Wang J, Waas AM, Wang H. Experimental and numerical study on the low-velocity impact behavior of foam-core sandwich panels. Compos Struct 2013;96:298–311
doi: 10.1016/j.compstruct.2012.09.002
88   Sas HS, Šimá P č SGek, Advani. A methodology to reduce variability during vacuum infusion with optimized design of distribution media. Compos Part A Appl Sci Manuf 2015;78:223–33
doi: 10.1016/j.compositesa.2015.08.011
89   Wang J, Simacek P, Advani SG. Use of centroidal Voronoi diagram to find optimal gate locations to minimize mold filling time in resin transfer molding. Compos Part A Appl Sci Manuf 2016;87:243–55
doi: 10.1016/j.compositesa.2016.04.026
90   Lawrence JM, Fried P, Advani SG. Automated manufacturing environment to address bulk permeability variations and race tracking in resin transfer molding by redirecting flow with auxiliary gates. Compos Part A Appl Sci Manuf 2005;36(8):1128–41
doi: 10.1016/j.compositesa.2005.01.024
91   Correia NC, Robitaille F, Long AC, Rudd CD, Šimáček P, Advani. Analysis of the vacuum infusion moulding process: I. Analytical formulation. Compos Part A Appl Sci Manuf 2005;36(12):1645–56
doi: 10.1016/j.compositesa.2005.03.019
92   Yenilmez B, Senan M, Sozer ME. Variation of part thickness and compaction pressure in vacuum infusion process. Compos Sci Technol 2009;69(11–12):1710–9
doi: 10.1016/j.compscitech.2008.05.009
93   Govignon Q, Bickerton S, Kelly PA. Simulation of the reinforcement compaction and resin flow during the complete resin infusion process. Compos Part A Appl Sci Manuf 2010;41(1):45–57
doi: 10.1016/j.compositesa.2009.07.007
94   Nguyen QT, Vidal-Sallé E, Boisse P, Park CH, Saouab A, Bréard J, et al.Mesoscopic scale analyses of textile composite reinforcement compaction. Compos Part B Eng 2013;44(1):231–41
doi: 10.1016/j.compositesb.2012.05.028
95   Ruiz E, Achim V, Soukane S, Trochu F, Bréard J. Optimization of injection flow rate to minimize micro/macro-voids formation in resin transfer molded composites. Compos Sci Technol 2006;66(3–4):475–86
doi: 10.1016/j.compscitech.2005.06.013
96   Walther J. The effect of fabric and fiber tow shear on dual scale flow and fiber bundle saturation during liquid molding of textile composites [dissertation]. Newark: University of Delaware; 2011.
97   Walther J, Simacek P, Advani SG. The effect of fabric and fiber tow shear on dual scale flow and fiber bundle saturation during liquid molding of textile composites. Int J Mater Form 2012;5(1):83–97
doi: 10.1007/s12289-011-1060-9
98   Pierce RS, Falzon BG, Thompson MC. A multi-physics process model for simulating the manufacture of resin-infused composite aerostructures. Compos Sci Technol 2017;149:269–79
doi: 10.1016/j.compscitech.2017.07.003
99   Pierce RS, Falzon BG, Thompson MC, Boman R. Implementation of a non-orthogonal constitutive model for the finite element simulation of textile composite draping. Appl Mech Mater 2014;553:76–81
doi: 10.4028/
100   Pierce RS, Falzon BG, Thompson MC, Boman R. A low-cost digital image correlation technique for characterising the shear deformation of fabrics for draping studies. Strain 2015;51(3):180–9
doi: 10.1111/str.12131
101   Pierce RS, Falzon BG, Thompson MC. Permeability characterization of sheared carbon fiber textile preform. Polym Compos. Epub 2016 Sep 15
doi: 10.1002/pc.24206
[1] Zhuo Cheng, Lang Qin, Jonathan A. Fan, Liang-Shih Fan. New Insight into the Development of Oxygen Carrier Materials for Chemical Looping Systems[J]. Engineering, 2018, 4(3): 343 -351 .
[2] Jennifer A. Clark, Erik E. Santiso. Carbon Sequestration through CO2 Foam-Enhanced Oil Recovery: A Green Chemistry Perspective[J]. Engineering, 2018, 4(3): 336 -342 .
[3] Andrea Di Maria, Karel Van Acker. Turning Industrial Residues into Resources: An Environmental Impact Assessment of Goethite Valorization[J]. Engineering, 2018, 4(3): 421 -429 .
[4] Lance A. Davis. Falcon Heavy[J]. Engineering, 2018, 4(3): 300 .
[5] Augusta Maria Paci. A Research and Innovation Policy for Sustainable S&T: A Comment on the Essay ‘‘Exploring the Logic and Landscape of the Knowledge System”[J]. Engineering, 2018, 4(3): 306 -308 .
[6] Ning Duan. When Will Speed of Progress in Green Science and Technology Exceed that of Resource Exploitation and Pollutant Generation?[J]. Engineering, 2018, 4(3): 299 .
[7] Jian-guo Li, Kai Zhan. Intelligent Mining Technology for an Underground Metal Mine Based on Unmanned Equipment[J]. Engineering, 2018, 4(3): 381 -391 .
[8] Veena Sahajwalla. Green Processes: Transforming Waste into Valuable Resources[J]. Engineering, 2018, 4(3): 309 -310 .
[9] Junye Wang, Hualin Wang, Yi Fan. Techno-Economic Challenges of Fuel Cell Commercialization[J]. Engineering, 2018, 4(3): 352 -360 .
[10] Raymond RedCorn, Samira Fatemi, Abigail S. Engelberth. Comparing End-Use Potential for Industrial Food-Waste Sources[J]. Engineering, 2018, 4(3): 371 -380 .
[11] Ning Duan, Linhua Jiang, Fuyuan Xu, Ge Zhang. A Non-Contact Original-State Online Real-Time Monitoring Method for Complex Liquids in Industrial Processes[J]. Engineering, 2018, 4(3): 392 -397 .
[12] Keith E. Gubbins, Kai Gu, Liangliang Huang, Yun Long, J. Matthew Mansell, Erik E. Santiso, Kaihang Shi, Małgorzata Ś liwińska-Bartkowiak, Deepti Srivastava. Surface-Driven High-Pressure Processing[J]. Engineering, 2018, 4(3): 311 -320 .
[13] Steff Van Loy, Koen Binnemans, Tom Van Gerven. Mechanochemical-Assisted Leaching of Lamp Phosphors: A Green Engineering Approach for Rare-Earth Recovery[J]. Engineering, 2018, 4(3): 398 -405 .
[14] Robert S. Weber, Johnathan E. Holladay. Modularized Production of Value-Added Products and Fuels from Distributed Waste Carbon-Rich Feedstocks[J]. Engineering, 2018, 4(3): 330 -335 .
[15] Hualin Wang, Pengbo Fu, Jianping Li, Yuan Huang, Ying Zhao, Lai Jiang, Xiangchen Fang, Tao Yang, Zhaohui Huang, Cheng Huang. Separation-and-Recovery Technology for Organic Waste Liquid with a High Concentration of Inorganic Particles[J]. Engineering, 2018, 4(3): 406 -415 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.