Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2017, Vol. 3 Issue (5) : 608 -615
Research |
Control for Intelligent Manufacturing: A Multiscale Challenge
Han-Xiong Li(),Haitao Si()
Department of Systems Engineering and Engineering Management, City University of Hong Kong, Hong Kong, China

The Made in China 2025 initiative will require full automation in all sectors, from customers to production. This will result in great challenges to manufacturing systems in all sectors. In the future of manufacturing, all devices and systems should have sensing and basic intelligence capabilities for control and adaptation. In this study, after discussing multiscale dynamics of the modern manufacturing system, a five-layer functional structure is proposed for uncertainties processing. Multiscale dynamics include: multi-time scale, space-time scale, and multi-level dynamics. Control action will differ at different scales, with more design being required at both fast and slow time scales. More quantitative action is required in low-level operations, while more qualitative action is needed regarding high-level supervision. Intelligent manufacturing systems should have the capabilities of flexibility, adaptability, and intelligence. These capabilities will require the control action to be distributed and integrated with different approaches, including smart sensing, optimal design, and intelligent learning. Finally, a typical jet dispensing system is taken as a real-world example for multiscale modeling and control.

Keywords System modeling      Process control      Artificial intelligence      Manufacturing      Jet dispensing     
Corresponding Authors: Han-Xiong Li,Haitao Si   
Online First Date: 02 November 2017    Issue Date: 08 November 2017
E-mail this article
E-mail Alert
Articles by authors
Han-Xiong Li
Haitao Si
Cite this article:   
Han-Xiong Li,Haitao Si. Control for Intelligent Manufacturing: A Multiscale Challenge[J]. Engineering, 2017, 3(5): 608 -615 .
URL:     OR
1   Hermann M, Pentek T, Otto B. Design principles for Industrie 4.0 scenarios: A literature review. Working paper No. 01/2015. Dortmund: Technische Universität Dortmund; 2015.
2   Khaitan SK, McCalley JD. Design techniques and applications of cyberphysical systems: A survey. IEEE Syst J 2015;9(2):350–65
doi: 10.1109/JSYST.2014.2322503
3   Lee EA. Cyber physical systems: Design challenges. Technical report. Berkeley: University of California at Berkeley; 2008 Jan. Report No.: UCB/EECS-2008-8.
4   Alippi C. Intelligence for embedded systems: A methodological approach.Cham: Springer; 2014.
5   Lee J, Bagheri B, Kao HA. A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manuf Lett 2015;3:18–23
doi: 10.1016/j.mfglet.2014.12.001
6   Guo L, Billings SA. State-space reconstruction and spatio-temporal prediction of lattice dynamical systems. IEEE Trans Automat Contr 2007;52(4):622–32
doi: 10.1109/TAC.2007.894513
7   Coca D, Billings SA. Identification of finite dimensional models of infinite dimensional dynamical systems. Automatica 2002;38(11):1851–65
doi: 10.1016/S0005-1098(02)00099-7
8   Li HX, Qi C. Spatio-temporal modeling of nonlinear distributed parameter systems: A time/space separation based approach.Dordrecht: Springer; 2011.
9   Li HX, Qi C. Modeling of distributed parameter systems for applications—A synthesized review from time-space separation. J Process Contr 2010;20(8):891–901
doi: 10.1016/j.jprocont.2010.06.016
10   Christofides PD. Nonlinear and robust control of PDE systems: Methods and applications to transport-reaction processes.Boston: Birkhäuser; 2001.
11   Deng H, Li HX, Chen G. Spectral-approximation-based intelligent modeling for distributed thermal processes. IEEE Trans Contr Syst T 2005;13(5):686–700
doi: 10.1109/TCST.2005.847329
12   Qi C, Li HX. Nonlinear dimension reduction based neural modeling for distributed parameter processes. Chem Eng Sci 2009;64(19):4164–70
doi: 10.1016/j.ces.2009.06.053
13   Liu Z, Li HX. A probabilistic fuzzy logic system for modeling and control. IEEE Trans Fuzzy Syst 2005;13(6):848–59
doi: 10.1109/TFUZZ.2005.859326
14   Li HX, Wang Y, Zhang G. Probabilistic fuzzy classification for stochastic data. IEEE Trans Fuzzy Syst 2017. In press.
15   Favero JL, Secchi AR, Cardozo NSM, Jasak H. Viscoelastic flow analysis using the software OpenFOAM and differential constitutive equations. J Non-Newton Fluid 2010;165(23–24):1625–36.
16   Tucker CL. Fundamentals of computer modeling for polymer processing.New York: Hanser Publishers; 1989.
17   Chen Y, Wang F, Li HX. Experimental and modeling study of breakup behavior in silicone jet dispensing for light-emitting diode packaging. IEEE Trans Comp Pack Man 2015;5(7):1019–26.
18   Chen Y, Li HX, Shan X, Gao J, Chen X, Wang F. Ultrasound aided smooth dispensing for high viscoelastic epoxy in microelectronic packaging. Ultrason Sonochem 2016;28:15–20
doi: 10.1016/j.ultsonch.2015.06.026
19   Li HX, Chen Y, Wang FL, inventors; Central South University, assignee. A new jet valve mechanism and dispensing method. China patent CN 201310388378.9. 2015 Nov 18. Chinese.
20   Li HX, Li WS, Shen P, Zhang HN, inventors; Central South University, assignee. A needle motion sensing mechanism for jet system and its displacement detection method. China patent CN201510431974.X. 2017 Apr 19. Chinese.
21   Li HX, Shen P, inventors; Central South University, assignee. Consistent control method and system for jet dispensing process. China patent CN201410150653.8. 2016 Aug 31. Chinese.
[1] Shutian Liu, Quhao Li, Junhuan Liu, Wenjiong Chen, Yongcun Zhang. A Realization Method for Transforming a Topology Optimization Design into Additive Manufacturing Structures[J]. Engineering, 2018, 4(2): 277 -285 .
[2] Stephen M. Malone, Marc J. Weissburg, Bert Bras. Industrial Ecosystems and Food Webs: An Ecological-Based Mass Flow Analysis to Model the Progress of Steel Manufacturing in China[J]. Engineering, 2018, 4(2): 209 -217 .
[3] Zhou Ji, Li Peigen, Zhou Yanhong, Wang Baicun, Zang Jiyuan, Meng Liu. Toward New-Generation Intelligent Manufacturing[J]. Engineering, 2018, 4(1): 11 -20 .
[4] Quy Bau Nguyen, Mui Ling Sharon Nai, Zhiguang Zhu, Chen-Nan Sun, Jun Wei, Wei Zhou. Characteristics of Inconel Powders for Powder-Bed Additive Manufacturing[J]. Engineering, 2017, 3(5): 695 -700 .
[5] Pinlian Han. Additive Design and Manufacturing of Jet Engine Parts[J]. Engineering, 2017, 3(5): 648 -652 .
[6] Yubao Chen. Integrated and Intelligent Manufacturing: Perspectives and Enablers[J]. Engineering, 2017, 3(5): 588 -595 .
[7] Patcharapit Promoppatum, Shi-Chune Yao, P. Chris Pistorius, Anthony D. Rollett. A Comprehensive Comparison of the Analytical and Numerical Prediction of the Thermal History and Solidification Microstructure of Inconel 718 Products Made by Laser Powder-Bed Fusion[J]. Engineering, 2017, 3(5): 685 -694 .
[8] Wentao Yan, Ya Qian, Weixin Ma, Bin Zhou, Yongxing Shen, Feng Lin. Modeling and Experimental Validation of the Electron Beam Selective Melting Process[J]. Engineering, 2017, 3(5): 701 -707 .
[9] Dongdong Gu, Chenglong Ma, Mujian Xia, Donghua Dai, Qimin Shi. A Multiscale Understanding of the Thermodynamic and Kinetic Mechanisms of Laser Additive Manufacturing[J]. Engineering, 2017, 3(5): 675 -684 .
[10] Zhen Zhang, Peng Yan, Guangbo Hao. A Large Range Flexure-Based Servo System Supporting Precision Additive Manufacturing[J]. Engineering, 2017, 3(5): 708 -715 .
[11] Ray Y. Zhong, Xun Xu, Eberhard Klotz, Stephen T. Newman. Intelligent Manufacturing in the Context of Industry 4.0: A Review[J]. Engineering, 2017, 3(5): 616 -630 .
[12] Amelia Yilin Lee, Jia An, Chee Kai Chua. Two-Way 4D Printing: A Review on the Reversibility of 3D-Printed Shape Memory Materials[J]. Engineering, 2017, 3(5): 663 -674 .
[13] Zhihong Yuan, Weizhong Qin, Jinsong Zhao. Smart Manufacturing for the Oil Refining and Petrochemical Industry[J]. Engineering, 2017, 3(2): 179 -182 .
[14] Ian David Lockhart Bogle. A Perspective on Smart Process Manufacturing Research Challenges for Process Systems Engineers[J]. Engineering, 2017, 3(2): 161 -165 .
[15] Feng Qian, Weimin Zhong, Wenli Du. Fundamental Theories and Key Technologies for Smart and Optimal Manufacturing in the Process Industry[J]. Engineering, 2017, 3(2): 154 -160 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.