Please wait a minute...
Submit  |   Chinese  | 
 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2015, Vol. 1 Issue (1) : 131 -138     https://doi.org/10.15302/J-ENG-2015004
Research |
Marine Structures: Future Trends and the Role of Universities
Preben Terndrup Pedersen()
Department of Mechanical Engineering, Technical University of Denmark, Lyngby DK-2800 Kgs., Denmark
Abstract
Abstract  

This paper emphasizes some of the challenges and trends associated with the future development of marine structures. Its main focus is on ways to improve the efficiency of energy-consuming ships, and on design challenges related to energy-producing offshore structures. This paper also discusses the analysis tools that are most needed to enable sustainable designs for future ships and offshore structures. The last section of the paper contains thoughts on the role of universities in education, research, and innovation regarding marine structures. It discusses curriculum requirements for maritime-technology education, basic research activities, and international cooperation.

Keywords marine structures      ships      offshore structures      curriculum      research activities     
Fund: 
Corresponding Authors: Preben Terndrup Pedersen   
Just Accepted Date: 31 March 2015   Issue Date: 03 July 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Preben Terndrup Pedersen
Cite this article:   
Preben Terndrup Pedersen. Marine Structures: Future Trends and the Role of Universities[J]. Engineering, 2015, 1(1): 131 -138 .
URL:  
http://engineering.org.cn/EN/10.15302/J-ENG-2015004     OR     http://engineering.org.cn/EN/Y2015/V1/I1/131
References
1   International Maritime Organization. Prevention of air pollution from ships, MEPC 59/INF 10, <month>April</month> <?Pub Caret?>2009
2   P. T. Pedersen, J. J. Jensen. Marine structures: Consuming and producing energy. In: C. B. Hansen, ed. Engineering Challenges: Energy, Climate Change & Health. Copenhagen: Technical University of Denmark, 2009: 6–17
3   I. M. V. Andersen. Full scale measurements of the hydro-elastic response of large container ships for decision support (Dissertation for the Doctoral Degree). Copenhagen: Technical University of Denmark, 2014
4   European Maritime Safety Agency. Annual overview of marine casualties and incidents. 2014
5   O. M. Faltinsen. Hydrodynamics of High-speed Marine Vehicles. Cambridge: Cambridge University Press, 2005
6   Y. S. Wu, C. Tian. A non-linear hydroelasticity theory of ships and its application. In: Edwin  Kreuzer, ed. IUTAM Symposium on Fluid-Structure Interaction in Ocean Engineering. Berlin, Heidelberg: Springer, 2007: 307–320
7   J. J. Jensen. Load and Global Strength. Amsterdam: Elsevier Science Publ., 2001
8   A. Mansour, D. Liu. Strength of Ships and Ocean Structures. Jersey City, USA: The Society of Naval Architects and Marine Engineers, 2008
9   P. T. Pedersen. Review and application of ship collision and grounding analysis procedures. Mar. Struct., 2010, 23(3): 241–262
10   F. Liu, W. Cui, X. Y. Li. China’s first deep manned submersible, JIAOLONG. Sci. China Earth Sci., 2010, 53(10): 1407–1410
11   J. J. Jensen. Extreme value predictions using Monte Carlo simulations with artificially increased load spectrum. Probabilist Eng. Mech., 2011, 26(2): 399–404
12   International Association of Oil & Gas Producers. Worldwide statistics for ship collisions against offshore oil installations during 1980¯2002. Risk Assessment Data Directory Report No. 434/16, 2010
13   A. F. de O. Falcão. Wave energy utilization: A review of technologies. Renew. Sust. Energ. Rev., 2010, 14(3): 899–918
Related
[1] Zhuo Cheng, Lang Qin, Jonathan A. Fan, Liang-Shih Fan. New Insight into the Development of Oxygen Carrier Materials for Chemical Looping Systems[J]. Engineering, 2018, 4(3): 343 -351 .
[2] Jennifer A. Clark, Erik E. Santiso. Carbon Sequestration through CO2 Foam-Enhanced Oil Recovery: A Green Chemistry Perspective[J]. Engineering, 2018, 4(3): 336 -342 .
[3] Andrea Di Maria, Karel Van Acker. Turning Industrial Residues into Resources: An Environmental Impact Assessment of Goethite Valorization[J]. Engineering, 2018, 4(3): 421 -429 .
[4] Lance A. Davis. Falcon Heavy[J]. Engineering, 2018, 4(3): 300 .
[5] Augusta Maria Paci. A Research and Innovation Policy for Sustainable S&T: A Comment on the Essay ‘‘Exploring the Logic and Landscape of the Knowledge System”[J]. Engineering, 2018, 4(3): 306 -308 .
[6] Ning Duan. When Will Speed of Progress in Green Science and Technology Exceed that of Resource Exploitation and Pollutant Generation?[J]. Engineering, 2018, 4(3): 299 .
[7] Jian-guo Li, Kai Zhan. Intelligent Mining Technology for an Underground Metal Mine Based on Unmanned Equipment[J]. Engineering, 2018, 4(3): 381 -391 .
[8] Veena Sahajwalla. Green Processes: Transforming Waste into Valuable Resources[J]. Engineering, 2018, 4(3): 309 -310 .
[9] Junye Wang, Hualin Wang, Yi Fan. Techno-Economic Challenges of Fuel Cell Commercialization[J]. Engineering, 2018, 4(3): 352 -360 .
[10] Raymond RedCorn, Samira Fatemi, Abigail S. Engelberth. Comparing End-Use Potential for Industrial Food-Waste Sources[J]. Engineering, 2018, 4(3): 371 -380 .
[11] Ning Duan, Linhua Jiang, Fuyuan Xu, Ge Zhang. A Non-Contact Original-State Online Real-Time Monitoring Method for Complex Liquids in Industrial Processes[J]. Engineering, 2018, 4(3): 392 -397 .
[12] Keith E. Gubbins, Kai Gu, Liangliang Huang, Yun Long, J. Matthew Mansell, Erik E. Santiso, Kaihang Shi, Małgorzata Ś liwińska-Bartkowiak, Deepti Srivastava. Surface-Driven High-Pressure Processing[J]. Engineering, 2018, 4(3): 311 -320 .
[13] Steff Van Loy, Koen Binnemans, Tom Van Gerven. Mechanochemical-Assisted Leaching of Lamp Phosphors: A Green Engineering Approach for Rare-Earth Recovery[J]. Engineering, 2018, 4(3): 398 -405 .
[14] Robert S. Weber, Johnathan E. Holladay. Modularized Production of Value-Added Products and Fuels from Distributed Waste Carbon-Rich Feedstocks[J]. Engineering, 2018, 4(3): 330 -335 .
[15] Hualin Wang, Pengbo Fu, Jianping Li, Yuan Huang, Ying Zhao, Lai Jiang, Xiangchen Fang, Tao Yang, Zhaohui Huang, Cheng Huang. Separation-and-Recovery Technology for Organic Waste Liquid with a High Concentration of Inorganic Particles[J]. Engineering, 2018, 4(3): 406 -415 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
京ICP备11030251号-2

 Engineering