Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2015, Vol. 1 Issue (1) : 131 -138
Research |
Marine Structures: Future Trends and the Role of Universities
Preben Terndrup Pedersen()
Department of Mechanical Engineering, Technical University of Denmark, Lyngby DK-2800 Kgs., Denmark

This paper emphasizes some of the challenges and trends associated with the future development of marine structures. Its main focus is on ways to improve the efficiency of energy-consuming ships, and on design challenges related to energy-producing offshore structures. This paper also discusses the analysis tools that are most needed to enable sustainable designs for future ships and offshore structures. The last section of the paper contains thoughts on the role of universities in education, research, and innovation regarding marine structures. It discusses curriculum requirements for maritime-technology education, basic research activities, and international cooperation.

Keywords marine structures      ships      offshore structures      curriculum      research activities     
Corresponding Authors: Preben Terndrup Pedersen   
Just Accepted Date: 31 March 2015   Issue Date: 03 July 2015
E-mail this article
E-mail Alert
Articles by authors
Preben Terndrup Pedersen
Cite this article:   
Preben Terndrup Pedersen. Marine Structures: Future Trends and the Role of Universities[J]. Engineering, 2015, 1(1): 131 -138 .
URL:     OR
1   International Maritime Organization. Prevention of air pollution from ships, MEPC 59/INF 10, <month>April</month> <?Pub Caret?>2009
2   P. T. Pedersen, J. J. Jensen. Marine structures: Consuming and producing energy. In: C. B. Hansen, ed. Engineering Challenges: Energy, Climate Change & Health. Copenhagen: Technical University of Denmark, 2009: 6–17
3   I. M. V. Andersen. Full scale measurements of the hydro-elastic response of large container ships for decision support (Dissertation for the Doctoral Degree). Copenhagen: Technical University of Denmark, 2014
4   European Maritime Safety Agency. Annual overview of marine casualties and incidents. 2014
5   O. M. Faltinsen. Hydrodynamics of High-speed Marine Vehicles. Cambridge: Cambridge University Press, 2005
6   Y. S. Wu, C. Tian. A non-linear hydroelasticity theory of ships and its application. In: Edwin  Kreuzer, ed. IUTAM Symposium on Fluid-Structure Interaction in Ocean Engineering. Berlin, Heidelberg: Springer, 2007: 307–320
7   J. J. Jensen. Load and Global Strength. Amsterdam: Elsevier Science Publ., 2001
8   A. Mansour, D. Liu. Strength of Ships and Ocean Structures. Jersey City, USA: The Society of Naval Architects and Marine Engineers, 2008
9   P. T. Pedersen. Review and application of ship collision and grounding analysis procedures. Mar. Struct., 2010, 23(3): 241–262
10   F. Liu, W. Cui, X. Y. Li. China’s first deep manned submersible, JIAOLONG. Sci. China Earth Sci., 2010, 53(10): 1407–1410
11   J. J. Jensen. Extreme value predictions using Monte Carlo simulations with artificially increased load spectrum. Probabilist Eng. Mech., 2011, 26(2): 399–404
12   International Association of Oil & Gas Producers. Worldwide statistics for ship collisions against offshore oil installations during 1980¯2002. Risk Assessment Data Directory Report No. 434/16, 2010
13   A. F. de O. Falcão. Wave energy utilization: A review of technologies. Renew. Sust. Energ. Rev., 2010, 14(3): 899–918
[1] Holger Krueger. Standardization for Additive Manufacturing in Aerospace[J]. Engineering, 2017, 3(5): 585 .
[2] Joe A. Sestak Jr.. High School Students from 157 Countries Convene to Address One of the 14 Grand Challenges for Engineering: Access to Clean Water[J]. Engineering, 2017, 3(5): 583 -584 .
[3] Lance A. Davis. Climate Agreement—Revisited[J]. Engineering, 2017, 3(5): 578 -579 .
[4] Ben A. Wender, M. Granger Morgan, K. John Holmes. Enhancing the Resilience of Electricity Systems[J]. Engineering, 2017, 3(5): 580 -582 .
[5] Jin-Xun Liu, Peng Wang, Wayne Xu, Emiel J. M. Hensen. Particle Size and Crystal Phase Effects in Fischer-Tropsch Catalysts[J]. Engineering, 2017, 3(4): 467 -476 .
[6] Luis Ribeiro e Sousa, Tiago Miranda, Rita Leal e Sousa, Joaquim Tinoco. The Use of Data Mining Techniques in Rockburst Risk Assessment[J]. Engineering, 2017, 3(4): 552 -558 .
[7] Maggie Bartolomeo. Third Global Grand Challenges Summit for Engineering[J]. Engineering, 2017, 3(4): 434 -435 .
[8] Michael Powalla, Stefan Paetel, Dimitrios Hariskos, Roland Wuerz, Friedrich Kessler, Peter Lechner, Wiltraud Wischmann, Theresa Magorian Friedlmeier. Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2[J]. Engineering, 2017, 3(4): 445 -451 .
[9] Raffaella Ocone. Reconciling “Micro” and “Macro” through Meso-Science[J]. Engineering, 2017, 3(3): 281 -282 .
[10] Baoning Zong, Bin Sun, Shibiao Cheng, Xuhong Mu, Keyong Yang, Junqi Zhao, Xiaoxin Zhang, Wei Wu. Green Production Technology of the Monomer of Nylon-6: Caprolactam[J]. Engineering, 2017, 3(3): 379 -384 .
[11] Pengcheng Xu, Yong Jin, Yi Cheng. Thermodynamic Analysis of the Gasification of Municipal Solid Waste[J]. Engineering, 2017, 3(3): 416 -422 .
[12] Lei Xu, Jinhui Peng, Hailong Bai, C. Srinivasakannan, Libo Zhang, Qingtian Wu, Zhaohui Han, Shenghui Guo, Shaohua Ju, Li Yang. Application of Microwave Melting for the Recovery of Tin Powder[J]. Engineering, 2017, 3(3): 423 -427 .
[13] Ee Teng Kho, Salina Jantarang, Zhaoke Zheng, Jason Scott, Rose Amal. Harnessing the Beneficial Attributes of Ceria and Titania in a Mixed-Oxide Support for Nickel-Catalyzed Photothermal CO2 Methanation[J]. Engineering, 2017, 3(3): 393 -401 .
[14] Ke Dang, Tuo Wang, Chengcheng Li, Jijie Zhang, Shanshan Liu, Jinlong Gong. Improved Oxygen Evolution Kinetics and Surface States Passivation of Ni-Bi Co-Catalyst for a Hematite Photoanode[J]. Engineering, 2017, 3(3): 285 -289 .
[15] Mu Xiao, Songcan Wang, Supphasin Thaweesak, Bin Luo, Lianzhou Wang. Tantalum (Oxy)Nitride: Narrow Bandgap Photocatalysts for Solar Hydrogen Generation[J]. Engineering, 2017, 3(3): 365 -378 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.