Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2015, Vol. 1 Issue (1) : 58 -65
Research |
Decentralized Searching of Multiple Unknown and Transient Radio Sources with Paired Robots
Chang-Young Kim1,Dezhen Song2,(),Jingang Yi3,Xinyu Wu4
1. Kespry, Inc., Menlo Park, CA 94025, USA
2. CSE Department, Texas A&M University, College Station, TX 77843, USA
3. MAE Department, Rutgers University, Piscataway, NJ 08854, USA
4. Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, China

In this paper, we develop a decentralized algorithm to coordinate a group of mobile robots to search for unknown and transient radio sources. In addition to limited mobility and ranges of communication and sensing, the robot team has to deal with challenges from signal source anonymity, short transmission duration, and variable transmission power. We propose a two-step approach: First, we decentralize belief functions that robots use to track source locations using checkpoint-based synchronization, and second, we propose a decentralized planning strategy to coordinate robots to ensure the existence of checkpoints. We analyze memory usage, data amount in communication, and searching time for the proposed algorithm. We have implemented the proposed algorithm and compared it with two heuristics. The experimental results show that our algorithm successfully trades a modest amount of memory for the fastest searching time among the three methods.

Keywords wireless localization      networked robots      transient targets     
Corresponding Authors: Dezhen Song   
Just Accepted Date: 31 March 2015   Online First Date: 19 June 2015    Issue Date: 02 July 2015
E-mail this article
E-mail Alert
Articles by authors
Chang-Young Kim
Dezhen Song
Jingang Yi
Xinyu Wu
Cite this article:   
Chang-Young Kim,Dezhen Song,Jingang Yi, et al. Decentralized Searching of Multiple Unknown and Transient Radio Sources with Paired Robots[J]. Engineering, 2015, 1(1): 58 -65 .
URL:     OR
1   G. Mao, B. Fidan, B. Anderson. Wireless sensor network localization techniques. Comput. Netw., 2007, 51(10): 2529–2553
2   E. D. Nerurkar, S. I. Roumeliotis, A. Martinelli. Distributed maximum a posteriori estimation for multi-robot cooperative localization. In: ICRA’09. IEEE International Conference on Robotics and Automation, 2009: 1402–1409
3   D. Koutsonikolas, S. Das, Y. Hu. Path planning of mobile landmarks for localization in wireless sensor networks. Comput. Commun., 2007, 30(13): 2577–2592
4   T. Sit, Z. Liu, M. Jr Ang, W. Seah. Multi-robot mobility enhanced hop-count based localization in ad hoc networks. Robot. Auton. Syst., 2007, 55(3): 244–252 
5   B. C. Liu, K. H. Lin, J. C. Wu. Analysis of hyperbolic and circular positioning algorithms using stationary signal-strength-difference measurements in wireless communications. IEEE Trans. Vehicular Technology, 2006, 55(2): 499–509
6   Y. Sun, J. Xiao, F. Cabrera-Mora. Robot localization and energy-efficient wireless communications by multiple antennas. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis: IEEE, 2009: 377–381 
7   M. Kim, N. Y. Chong. Direction sensing RFID reader for mobile robot navigation. IEEE Trans. Autom. Sci. Eng., 2009, 6(1): 44–54 
8   F. H. Durrant-Whyte. Data fusion in sensor networks. In: IEEE International Conference on Video and Signal Based Surveillance, 2006: 39
9   K. Y. K. Leung, T. D. Barfoot, H. Liu. Decentralized localization of sparsely-communicating robot networks: A centralized-equivalent approach. IEEE Trans. on Robot., 2010, 26(1): 62–77
10   E. D. Nerurkar, S. I. Roumeliotis. Asynchronous multi-centralized cooperative localization. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2010: 4352–4359
11   G. A. S. Pereira, A. K. Das, V. Kumar, M. F. M. Campos. Decentralized motion planning for multiple robots subject to sensing and communication constraints. In: Proceedings of the Second MultiRobot Systems Workshop. Kluwer Academic Press, 2003: 267–278
12   D. Bhadauria, O. Tekdas, V. Isler. Robotic data mules for collecting data over sparse sensor fields. J. Field Robot., 2011, 28(3): 388–404
13   S. Martinez, F. Bullo, J. Cortes, E. Fazzoli. On synchronous robotic networks part I: Models, tasks, and complexity. IEEE Trans. Automatic Control, 2007, 52(12): 2199–2213
14   S. Martinez, F. Bullo, J. Cortes, E. Fazzoli. On synchronous robotic networks part II: Time complexity of rendezvous and deployment algorithms. IEEE Trans. Automatic Control, 2007, 52(12): 2214–2226
15   D. Song, C. Kim, J. Yi. Stochastic modeling of the expected time to search for an intermittent signal source under a limited sensing range. In: Robotics: Science and Systems (RSS) Conference, Zaragoza, 2010
16   D. Song, C. Kim, J. Yi. On the time to search for an intermittent signal source under a limited sensing range. IEEE Trans. Robot., 2011, 27(2): 313–323 
17   D. Song, C. Kim, J. Yi. Monte Carlo simultaneous localization of multiple unknown transient radio sources using a mobile robot with a directional antenna. In: IEEE International Conference on Robotics and Automation. Kobe, 2009: 3154–3159
18   D. Song, C. Kim, J. Yi. Simultaneous localization of multiple unknown and transient radio sources using a mobile robot. IEEE Trans. Robot., 2012, 28(3): 668–680
19   C. Kim, D. Song, Y. Xu, J. Yi. Localization of multiple unknown transient radio sources using multiple paired mobile robots with limited sensing ranges. In: IEEE International Conference on Robotics and Automation (ICRA). Shanghai, 2011
20   C. Kim, D. Song, Y. Xu, J. Yi, X. Wu. Cooperative search of multiple unknown transient radio sources using multiple paired mobile robots. IEEE Trans. Robot., 2014, 30(5): 1161–1173
21   C. Kim, D. Song, J. Yi. Decentralized searching of multiple unknown and transient radio sources. In: IEEE International Conference on Robotics and Automation (ICRA). Karlsruhe, 2013
22   S. M. Ross. Introduction to Probability Models. 9th ed. Academic Press, 2007
[1] Holger Krueger. Standardization for Additive Manufacturing in Aerospace[J]. Engineering, 2017, 3(5): 585 .
[2] Joe A. Sestak Jr.. High School Students from 157 Countries Convene to Address One of the 14 Grand Challenges for Engineering: Access to Clean Water[J]. Engineering, 2017, 3(5): 583 -584 .
[3] Lance A. Davis. Climate Agreement—Revisited[J]. Engineering, 2017, 3(5): 578 -579 .
[4] Ben A. Wender, M. Granger Morgan, K. John Holmes. Enhancing the Resilience of Electricity Systems[J]. Engineering, 2017, 3(5): 580 -582 .
[5] Jin-Xun Liu, Peng Wang, Wayne Xu, Emiel J. M. Hensen. Particle Size and Crystal Phase Effects in Fischer-Tropsch Catalysts[J]. Engineering, 2017, 3(4): 467 -476 .
[6] Luis Ribeiro e Sousa, Tiago Miranda, Rita Leal e Sousa, Joaquim Tinoco. The Use of Data Mining Techniques in Rockburst Risk Assessment[J]. Engineering, 2017, 3(4): 552 -558 .
[7] Maggie Bartolomeo. Third Global Grand Challenges Summit for Engineering[J]. Engineering, 2017, 3(4): 434 -435 .
[8] Michael Powalla, Stefan Paetel, Dimitrios Hariskos, Roland Wuerz, Friedrich Kessler, Peter Lechner, Wiltraud Wischmann, Theresa Magorian Friedlmeier. Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2[J]. Engineering, 2017, 3(4): 445 -451 .
[9] Raffaella Ocone. Reconciling “Micro” and “Macro” through Meso-Science[J]. Engineering, 2017, 3(3): 281 -282 .
[10] Baoning Zong, Bin Sun, Shibiao Cheng, Xuhong Mu, Keyong Yang, Junqi Zhao, Xiaoxin Zhang, Wei Wu. Green Production Technology of the Monomer of Nylon-6: Caprolactam[J]. Engineering, 2017, 3(3): 379 -384 .
[11] Pengcheng Xu, Yong Jin, Yi Cheng. Thermodynamic Analysis of the Gasification of Municipal Solid Waste[J]. Engineering, 2017, 3(3): 416 -422 .
[12] Lei Xu, Jinhui Peng, Hailong Bai, C. Srinivasakannan, Libo Zhang, Qingtian Wu, Zhaohui Han, Shenghui Guo, Shaohua Ju, Li Yang. Application of Microwave Melting for the Recovery of Tin Powder[J]. Engineering, 2017, 3(3): 423 -427 .
[13] Ee Teng Kho, Salina Jantarang, Zhaoke Zheng, Jason Scott, Rose Amal. Harnessing the Beneficial Attributes of Ceria and Titania in a Mixed-Oxide Support for Nickel-Catalyzed Photothermal CO2 Methanation[J]. Engineering, 2017, 3(3): 393 -401 .
[14] Ke Dang, Tuo Wang, Chengcheng Li, Jijie Zhang, Shanshan Liu, Jinlong Gong. Improved Oxygen Evolution Kinetics and Surface States Passivation of Ni-Bi Co-Catalyst for a Hematite Photoanode[J]. Engineering, 2017, 3(3): 285 -289 .
[15] Mu Xiao, Songcan Wang, Supphasin Thaweesak, Bin Luo, Lianzhou Wang. Tantalum (Oxy)Nitride: Narrow Bandgap Photocatalysts for Solar Hydrogen Generation[J]. Engineering, 2017, 3(3): 365 -378 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.