Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2016, Vol. 2 Issue (4) : 414 -425     DOI: 10.1016/J.ENG.2016.04.014
Research |
Infrastructure for China’s Ecologically Balanced Civilization
Chris Kennedy1(),Ma Zhong2,Jan Corfee-Morlot3
1. Department of Civil Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada
2. School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
3. Organization for Economic Co-operation and Development, Paris 75775, France

China’s green investment needs up to 2020 are ¥1.7 trillion—2.9 trillion CNY ($274 billion—468 billion USD) per year. Estimates of financing requirements are provided for multiple sectors, including sustainable energy, infrastructure (including for environmental protection), environmental remediation, industrial pollution control, energy and water efficiency, and green products. The context to China’s green financing is discussed, covering urbanization, climate change, interactions between infrastructure sectors, and the transformation of industry. Much of the infrastructure financing will occur in cities, with a focus on equity, environmental protection, and quality of life under the National New-Type Urbanization Plan (20142020). China has implemented many successful policies in the building sector, but there is still considerable scope for improvement in the energy efficiency of Chinese buildings. China is currently pursuing low-carbon growth strategies that are consistent with its overall environmental and quality-of-life objectives. Beyond 2020, China’s future as an ecologically balanced civilization will rest on the implementation of a central infrastructure policy: China 2050 High Renewable Energy Penetration Scenario and Roadmap Study. As exemplified by the Circular Economy Development Strategy and Near-Term Action Plan, an essential part of China’s green industrial transformation involves engineering systems that conserve materials, thereby reducing or even eliminating wastes. To better understand changes to China’s economy under its green transformation and to unlock large potential sources of finance, it is necessary to undertake a fuller examination of all of China’s infrastructure sectors, particularly freight rail infrastructure and ports. Large investments are required to clean up a legacy of environmental contamination of soil and groundwater and to reduce industrial pollution. Transformation of the power sector away from coal will avoid some industrial treatment costs. The contribution of engineers in planning, designing, and constructing China’s new green infrastructure will be furthered by understanding the broad policy context and the interactions between land use, infrastructure, and environmental performance.

Keywords Sustainable engineering      Green growth      Industrial ecology      Low-carbon development      Green finance     
Corresponding Authors: Chris Kennedy   
Just Accepted Date: 20 December 2016   Online First Date: 27 December 2016    Issue Date: 28 December 2016
E-mail this article
E-mail Alert
Articles by authors
Chris Kennedy
Ma Zhong
Jan Corfee-Morlot
Cite this article:   
Chris Kennedy,Ma Zhong,Jan Corfee-Morlot. Infrastructure for China’s Ecologically Balanced Civilization[J]. Engineering, 2016, 2(4): 414 -425 .
URL:     OR
1   Kennedy CA, Corfee-Morlot J. Mobilising investment in low-carbon, climate-resilient infrastructure. OECD environment working papers, No. 46. Paris: OECD Publishing;?2012
doi: 10.1787/5k8zm3gxxmnq-en
2   Kennedy CA, Corfee-Morlot J. Past performance and future needs for low carbon climate resilient infrastructure-an investment perspective. Energ Policy 2013;59(C):773–83
doi: 10.1016/j.enpol.2013.04.031
3   National Railway Administration of the People’s Republic of China. Railway statistical bulletin 2013 [Internet]. 2014Apr 10 [cited 2015 Sep 16]. Available from: Chinese.
4   International Renewable Energy Agency. Renewable energy prospects: China, REmap 2030 analysis [Internet]. 2014 Nov [cited 2015 Sep 16]. Available from:
5   China Council for International Cooperation on Environment and Development. Demand for green finance. In: Green finance reform and green transformation. Task force report. CCICED; 2015 Nov. Chinese.
6   Yuan Z, Bi J, Moriguichi Y. The circular economy: a new development strategy in China. J Ind Ecol 2006;10(1-2):4–8
doi: 10.1162/108819806775545321
7   Geng Y, Sarkis J, Ultiati S, Zhang P. Measuring China’s circular economy. Science 2013;339(6127):1526–7
doi: 10.1126/science.1227059
8   OECD. OECD urban policy reviews: China 2015. Paris: OECD Publishing; 2015.
9   Shi F, Huang T, Tanikawa H, Han J, Hashimoto S, Moriguchi Y. Toward a low carbon dematerialization society. J Ind Ecol 2012;16(4):493–505
doi: 10.1111/j.1530-9290.2012.00523.x
10   Corfee-Morlot J, Marchal V, Kauffmann C, Kennedy C, Stewart F, Kaminker C, . Towards a green investment policy framework: the case of low-carbon, climate-resilient infrastructure. OECD Environment Working Papers 2012;2(48):1–60
doi: 10.1787/5k8zth7s6s6d-en
11   Bai X, Shi P, Liu Y. Society: realizing China’s urban dream. Nature 2014;509 (7499): 158–60
doi: 10.1038/509158a
12   Wang Q. Effects of urbanisation on energy consumption in China. Energ Policy 2014;65(3):332–9
doi: 10.1016/j.enpol.2013.10.005
13   Kennedy CA, Stewart I, Facchini A, Cersosimo I, Mele R, Chen B, . Energy and material flows of megacities. Proc Natl Acad Sci USA 2015;112(19):5985–990
doi: 10.1073/pnas.1504315112
14   Vernay A-L, Mulder KF, Kamp LM, De Bruijn H. Exploring the socio-technical dynamics of systems integration-the case of sewage gas for transport in Stockholm, Sweden. J Cleaner Prod 2013;44:190–99
doi: 10.1016/j.jclepro.2012.11.040
15   Van Berkel R, Fujita T, Hashimoto S, Geng Y. Industrial and urban symbiosis in Japan: analysis of the Eco-Town program 1997 2006. J Environ Manage 2009;90(3):1544–56
doi: 10.1016/j.jenvman.2008.11.010
16   Van Berkel R, Fujita T, Hashimoto S, Fujii M. Quantitative assessment of urban and industrial symbiosis in Kawasaki, Japan. Environ Sci Technol 2009;43(5):1271–81
doi: 10.1021/es803319r
17   Li J, Shui B. A comprehensive analysis of building energy efficiency policies in China: status quo and development perspective. J Cleaner Prod 2015;90:326–44
doi: 10.1016/j.jclepro.2014.11.061
18   IEA. Transition to sustainable buildings: strategies and opportunities to 2050. Paris: OECD Publishing; 2013.
19   Li J, Colombier M. Economic instruments for mitigating carbon emissions: scaling up carbon finance in China’s buildings sector. Climatic Change 2011;107(3):567–91
doi: 10.1007/s10584-010-9970-y
20   Wu L, Huo H. Energy efficiency achievements in China’s industrial and transport sectors: how do they rate? Energ Policy 2014;73(C):38–46
doi: 10.1016/j.enpol.2014.05.039
21   Huo H, Wang M, Zhang X, He K, Gong H, Jiang K, . Projection of energy use and greenhouse gas emissions by motor vehicles in China: policy options and impacts. Energ Policy 2012;43(3):37–48
doi: 10.1016/j.enpol.2011.09.065
22   Lyu C, Ou X, Zhang X. China automotive energy consumption and greenhouse gas emissions outlook to 2050. Mitigation Adapt Strategies Glob Change 2015;20(5):627–50
doi: 10.1007/s11027-014-9620-1
23   Liu W, Lund H, Mathiesen BV. Modelling the transport system in China and evaluating the current strategies towards the sustainable transport development. Energ Policy 2013;58(9):347–57
doi: 10.1016/j.enpol.2013.03.032
24   Wang Q. China energy databook. Beijing: Tsinghua University; 2013.
25   Sun N. The study on indicator system of urban rail transit and energy conservation strategy. 2011.
26   Nykvist B, Nilsson M. Rapidly falling costs of battery packs for electric vehicles. Nat Clim Change 2015;5(4):329–32
doi: 10.1038/nclimate2564
27   Lin B, Ouyang X. Energy demand in China: comparison of characteristics between the US and China in rapid urbanization stage. Energ Convers Manage 2014;79:128–39
doi: 10.1016/j.enconman.2013.12.016
28   Chan CK, Yao X. Air pollution in mega cities in China. Atmos Environ 2008;42(1):1–42
doi: 10.1016/j.atmosenv.2007.09.003
29   Zhang X, Hu H, Zhang R, Deng S. Interactions between China’s economy, energy and the air emissions and their policy implications. Renew Sust Energ Rev 2014;38(C):624 38.
30   World Bank. World development indicators [Internet]. [cited 2015 Sep 15]. Available from:
31   Zhang B, Chen GQ. Methane emissions by Chinese economy: inventory and embodiment analysis. Energ Policy 2010;38(8):4304–16
doi: 10.1016/j.enpol.2010.03.059
32   National Development and Reform Commission, Department of Climate Change. The People’s Republic of China second national communication on climate change. Beijing: China Economy Publishing House; 2013. Chinese.
33   Le Quéré C, Moriarty R, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, . Global carbon budget 2015. Earth Syst Sci Data 2015;7(2):349–96
doi: 10.5194/essd-7-349-2015
34   Olivier JGJ, Janssens-Maenhout G, Muntean M, Peters JAHW. Trends in global CO2 emissions: 2015 report. The Hague: PBL Netherlands Environmental Assessment Agency; 2015 Nov. Report No.: JRC98184.
35   IEA. International energy agency online statistics (country indicators for China) [Internet]. [cited 2016 Jun 26]. Available from:
36   Kennedy CA. Key threshold for electricity emissions. Nat Clim Change 2015;5(3):179–81
doi: 10.1038/nclimate2494
37   IEA. World energy outlook 2014. Paris: OECD Publishing; 2014.
38   Teng F, Liu Q, Gu A, Yang X, Chen Y, Tian C, . Part III: National deep decarbonization pathways developed by country research (China). In: Pathways to deep decarbonization: 2014 report. Paris: SDSN and IDDRI; 2014. p. 83–92.
39   Energy Research Institute of the National Development and Reform Commission. China 2050 high renewable energy penetration scenario and roadmap study. 2015 Apr.
40   Pasquier SB, editor. Energy efficiency series-saving electricity in a hurry: update 2011 information paper. Paris: IEA OECD Publishing; 2011.
41   Château J, Magn¨¦ B, Cozzi L. Economic implications of the IEA efficient world scenario. OECD environment working papers, No. 64. Paris: OECD Publishing; 2014
doi: 10.1787/5jz2qcn29lbw-en
42   IEA. Energy efficiency market report 2013. Paris: OECD Publishing; 2013.
43   IEA. Energy efficiency market report 2014. Paris: OECD Publishing; 2014.
44   Liu W, Lund H, Mathiesen BV, Zhang X. Potential of renewable energy systems in China. Appl Energ 2011;88(2):518–25
doi: 10.1016/j.apenergy.2010.07.014
45   Qi Z, Yang J. China implements radical railway reform. Int Rail J 2013;53(8): 18–20,22.
46   Mou D, Li Z. A spatial analysis of China’s coal flow. Energ Policy 2012;48:358–68
doi: 10.1016/j.enpol.2012.05.034
47   McNerney J, Farmer JD, Trancik JE. Historical costs of coal-fired electricity and implications for the future. Energ Policy 2011;39(6):3042–54
doi: 10.1016/j.enpol.2011.01.037
48   Rutkowski R. Rebalancing China’s railway sector [Internet]. 2013 Aug 29 [cited 2015 Sep 15]. Available from:
49   IEA. Efficiency of coal power in China. Paris: OECD Publishing; 2014.
50   Wang Y, Sun T. Life cycle assessment of CO2 emissions from wind power plants: methodology and case studies. Renew Energ 2012; 43:30–6
doi: 10.1016/j.renene.2011.12.017
51   Chen B, Chen S. Urban metabolism and nexus. Ecol Inform 2014;26:1–2
doi: 10.1016/j.ecoinf.2014.09.010
[1] Luis Ribeiro e Sousa, Tiago Miranda, Rita Leal e Sousa, Joaquim Tinoco. The Use of Data Mining Techniques in Rockburst Risk Assessment[J]. Engineering, 2017, 3(4): 552 -558 .
[2] Maggie Bartolomeo. Third Global Grand Challenges Summit for Engineering[J]. Engineering, 2017, 3(4): 434 -435 .
[3] Jian-Feng Chen. Green Chemical Engineering for a Better Life[J]. Engineering, 2017, 3(3): 279 .
[4] Vassilis M. Charitopoulos, Lazaros G. Papageorgiou, Vivek Dua. Nonlinear Model-Based Process Operation under Uncertainty Using Exact Parametric Programming[J]. Engineering, 2017, 3(2): 202 -213 .
[5] Pedro A. Castillo Castillo, Pedro M. Castro, Vladimir Mahalec. Global Optimization of Nonlinear Blend-Scheduling Problems[J]. Engineering, 2017, 3(2): 188 -201 .
[6] Francesco Rossi, Simone Colombo, Sauro Pierucci, Eliseo Ranzi, Flavio Manenti. Upstream Operations in the Oil Industry: Rigorous Modeling of an Electrostatic Coalescer[J]. Engineering, 2017, 3(2): 220 -231 .
[7] Feng Qian, Weimin Zhong, Wenli Du. Fundamental Theories and Key Technologies for Smart and Optimal Manufacturing in the Process Industry[J]. Engineering, 2017, 3(2): 154 -160 .
[8] Yihui Ding, Ping Wu, Yanju Liu, Yafang Song. Environmental and Dynamic Conditions for the Occurrence of Persistent Haze Events in North China[J]. Engineering, 2017, 3(2): 266 -271 .
[9] Xiaobo Luo, Meihong Wang. Improving Prediction Accuracy of a Rate-Based Model of an MEA-Based Carbon Capture Process for Large-Scale Commercial Deployment[J]. Engineering, 2017, 3(2): 232 -243 .
[10] Jinliang Ding, Cuie Yang, Tianyou Chai. Recent Progress on Data-Based Optimization for Mineral Processing Plants[J]. Engineering, 2017, 3(2): 183 -187 .
[11] Zhihong Yuan, Weizhong Qin, Jinsong Zhao. Smart Manufacturing for the Oil Refining and Petrochemical Industry[J]. Engineering, 2017, 3(2): 179 -182 .
[12] Ian David Lockhart Bogle. A Perspective on Smart Process Manufacturing Research Challenges for Process Systems Engineers[J]. Engineering, 2017, 3(2): 161 -165 .
[13] Mariano Martín. Artificial versus Natural Reuse of CO2 for DME Production: Are We Any Closer?[J]. Engineering, 2017, 3(2): 166 -170 .
[14] Yun Gao, Xiang Gao, Xiaohua Zhang. The 2 °C Global Temperature Target and the Evolution of the Long-Term Goal of Addressing Climate Change—From the United Nations Framework Convention on Climate Changeto the Paris Agreement[J]. Engineering, 2017, 3(2): 272 -278 .
[15] Shabnam Sedghi, Biao Huang. Real-Time Assessment and Diagnosis of Process Operating Performance[J]. Engineering, 2017, 3(2): 214 -219 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
Today's visits ;Accumulated visits . 京ICP备11030251号-2