Please wait a minute...
Submit  |   Chinese  | 
 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2017, Vol. 3 Issue (1) : 66 -70     DOI: 10.1016/J.ENG.2017.01.020
Research |
Emerging Trends for Microbiome Analysis: From Single-Cell Functional Imaging to Microbiome Big Data
Jian Xu1,5(),Bo Ma1,5,Xiaoquan Su1,5,Shi Huang1,5,Xin Xu4,Xuedong Zhou4,Wei Huang3,Rob Knight2()
1. Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
2. Center for Microbiome Innovation, Department of Pediatrics, Department of Computer Science and Engineering, University of California San Diego, CA 92093, USA
3. Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
4. State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
5. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract
Abstract  

Method development has always been and will continue to be a core driving force of microbiome science. In this perspective, we argue that in the next decade, method development in microbiome analysis will be driven by three key changes in both ways of thinking and technological platforms: ① a shift from dissecting microbiota structureby sequencing to tracking microbiota state, function, and intercellular interaction via imaging; ② a shift from interrogating a consortium or population of cells to probing individual cells; and ③ a shift from microbiome data analysis to microbiome data science. Some of the recent method-development efforts by Chinese microbiome scientists and their international collaborators that underlie these technological trends are highlighted here. It is our belief that the China Microbiome Initiative has the opportunity to deliver outstanding “Made-in-China” tools to the international research community, by building an ambitious, competitive, and collaborative program at the forefront of method development for microbiome science.

Keywords Microbiome      Methoddevelopment      Single-cell analysis      Big data      China Microbiome Initiative     
Fund: 
Corresponding Authors: Jian Xu,Rob Knight   
Just Accepted Date: 21 February 2017   Online First Date: 01 March 2017    Issue Date: 02 March 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jian Xu
Bo Ma
Xiaoquan Su
Shi Huang
Xin Xu
Xuedong Zhou
Wei Huang
Rob Knight
Cite this article:   
Jian Xu,Bo Ma,Xiaoquan Su, et al. Emerging Trends for Microbiome Analysis: From Single-Cell Functional Imaging to Microbiome Big Data[J]. Engineering, 2017, 3(1): 66 -70 .
URL:  
http://engineering.org.cn/EN/10.1016/J.ENG.2017.01.020     OR     http://engineering.org.cn/EN/Y2017/V3/I1/66
References
1   Dubilier N, McFall-Ngai M, Zhao L. Microbiology: create a global microbiome effort. Nature 2015;526(7575):631–4.10.1038/526631a
doi: 10.1038/526631a.
2   Bouchie A. White House unveils National Microbiome Initiative. Nat Biotechnol 2016;34(6):580. 10.1038/nbt0616-580a
doi: 10.1038/nbt0616-580a.
3   Blaser MJ, Cardon ZG, Cho MK, Dangl JL, Donohue TJ, Green JL, et al. Toward a predictive understanding of earth’s microbiomes to address 21st century challenges. MBio 2016;7(3):e00714–16. 10.1128/mBio.00714-16
doi: 10.1128/mBio.00714-16.
4   Teng L, Wang X, Wang X, Gou H, Ren L, Wang T, et alLabel-free, rapid and quantitative phenotyping of stress response in E. coli via Ramanome. Sci Rep 2016;6:34359. 10.1038/srep34359
doi: 10.1038/srep34359.
5   Wang Y, Ji Y, Wharfe ES, Meadows RS, March P, Goodacre R, et al. Raman activated cell ejection for isolation of single cells. Anal Chem 2013;85(22):10697–701. 10.1021/ac403107p
doi: 10.1021/ac403107p.
6   Berry D, Mader E, Lee TK, Woebken D, Wang Y, Zhu D, et al. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. Proc Natl Acad Sci USA 2015;112(2):E194–203. 10.1073/pnas.1420406112
doi: 10.1073/pnas.1420406112.
7   Wang T, Ji Y, Wang Y, Jia J, Li J, Huang S, et al. Quantitative dynamics of triacylglycerol accumulation in microalgae populations at single-cell resolution revealed by Raman microspectroscopy. Biotechnol Biofuels 2014;7(1):58. 10.1186/1754-6834-7-58
doi: 10.1186/1754-6834-7-58.
8   Ji Y, He Y, Cui Y, Wang T, Wang Y, Li Y, et al. Raman spectroscopy provides a rapid, non-invasive method for quantitation of starch in live, unicellular microalgae. Biotechnol J 2014;9(12):1512–8. 10.1002/biot.201400165
doi: 10.1002/biot.201400165.
9   Wang Y, Song Y, Tao Y, Muhamadali H, Goodacre R, Zhou NY, et al. Reverse and multiple stable isotope probing to study bacterial metabolism and interactions at the single cell level. Anal Chem 2016;88(19):9443–50
doi: 10.1021/acs.analchem.6b01602
10   Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature 2011;473(7346):174–80. 10.1038/nature09944
doi: 10.1038/nature09944.
11   Nayfach S, Pollard KS. Toward accurate and quantitative comparative metagenomics. Cell 2016;166(5):1103–16. 10.1016/j.cell.2016.08.007
doi: 10.1016/j.cell.2016.08.007.
12   Liu J, Wang H, Yang H, Zhang Y, Wang J, Zhao F, et al. Composition-based classification of short metagenomic sequences elucidates the landscapes of taxonomic and functional enrichment of microorganisms. Nucleic Acids Res 2013;41(1):e3. 10.1093/nar/gks828
doi: 10.1093/nar/gks828.
13   Zhang Y, Ji P, Wang J, Zhao F. RiboFR-Seq: a novel approach to linking 16S rRNA amplicon profiles to metagenomes. Nucleic Acids Res 2016;44(10):e99. 10.1093/nar/gkw165
doi: 10.1093/nar/gkw165.
14   Peng G, Ji P, Zhao F. A novel codon-based de Bruijn graph algorithm for gene construction from unassembled transcriptomes. Genome Biol 2016;17(1):232. 10.1186/s13059-016-1094-x
doi: 10.1186/s13059-016-1094-x.
15   Ji P, Zhang Y, Wang J, Zhao F. MetaSort untangles metagenome assembly by reducing microbial community complexity. Nat Commun 2017;8:14306. 10.1038/ncomms14306
doi: 10.1038/ncomms14306.
16   Zhou Q, Su X, Wang A, Xu J, Ning K. QC-Chain: fast and holistic quality control method for next-generation sequencing data. PLoS One 2013;8(4):e60234. 10.1371/journal.pone.0060234
doi: 10.1371/journal.pone.0060234.
17   Su X, Xu J, Ning K. Meta-Storms: efficient search for similar microbial communities based on a novel indexing scheme and similarity score for metagenomic data. Bioinformatics 2012;28(19):2493–501. 10.1093/bioinformatics/bts470
doi: 10.1093/bioinformatics/bts470.
18   Su X, Wang X, Jing G, Ning K. GPU-Meta-Storms: computing the structure similarities among massive amount of microbial community samples using GPU. Bioinformatics 2014;30(7):1031–3
doi: 10.1093/bioinformatics/btt736
19   Su X, Hu J, Huang S, Ning K. Rapid comparison and correlation analysis among massive number of microbial community samples based on MDV data model. Sci Rep 2014;4:6393. 10.1038/srep06393
doi: 10.1038/srep06393.
20   Song B, Su X, Xu J, Ning K. MetaSee: an interactive and extendable visualization toolbox for metagenomic sample analysis and comparison. PLoS One 2012;7(11):e48998. 10.1371/journal.pone.0048998
doi: 10.1371/journal.pone.0048998.
21   Rinke C, Lee J, Nath N, Goudeau D, Thompson B, Poulton N, et al. Obtaining genomes from uncultivated environmental microorganisms using FACS-based single-cell genomics. Nat Protoc 2014;9(5):1038–48. 10.1038/nprot.2014.067
doi: 10.1038/nprot.2014.067.
22   Zhang P, Ren L, Zhang X, Shan Y, Wang Y, Ji Y, et al. Raman-activated cell sorting based on dielectrophoretic single-cell trap and release. Anal Chem 2015;87(4):2282–9. 10.1021/ac503974e
doi: 10.1021/ac503974e.
23   Zhang Q, Zhang P, Gou H, Mou C, Huang WE, Yang M, et al. Towards high-throughput microfluidic Raman-activated cell sorting. Analyst 2015;140(18):6163–74. Erratum in: Analyst 2015;140(19):6758.10.1039/C5AN01074H
doi: 10.1039/C5AN01074H.
24   Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF, et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 2013;499(7459):431–7. 10.1038/nature12352
doi: 10.1038/nature12352.
25   Mason OU, Hazen TC, Borglin S, Chain PSG, Dubinsky EA, Fortney JL, et al. Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. ISME J 2012;6(9):1715–27.10.1038/ismej.2012.59
doi: 10.1038/ismej.2012.59.
26   Lasken RS, McLean JS. Recent advances in genomic DNA sequencing of microbial species from single cells. Nat Rev Genet 2014;15(9):577–84. 10.1038/nrg3785
doi: 10.1038/nrg3785.
27   Roux S, Hallam SJ, Woyke T, Sullivan MB. Viral dark matter and virus–host interactions resolved from publicly available microbial genomes. eLife 2015;4:e08490
doi: 10.7554/eLife.08490
28   Tang HW, Yang XB, Kirkham J, Smith DA. Probing intrinsic and extrinsic components in single osteosarcoma cells by near-infrared surface-enhanced Raman scattering. Anal Chem 2007;79(10):3646–53. 10.1021/ac062362g
doi: 10.1021/ac062362g.
29   Li M, Canniffe DP, Jackson PJ, Davison PA, FitzGerald S, Dickman MJ, et al. Rapid resonance Raman microspectroscopy to probe carbon dioxide fixation by single cells in microbial communities. ISME J 2012;6(4):875–85. 10.1038/ismej.2011.150
doi: 10.1038/ismej.2011.150.
30   McEwen GD, Wu Y, Tang M, Qi X, Xiao Z, Baker SM, et al. Subcellular spectroscopic markers, topography and nanomechanics of human lung cancer and breast cancer cells examined by combined confocal Raman microspectroscopy and atomic force microscopy. Analyst 2013;138(3):787–97.10.1039/C2AN36359C
doi: 10.1039/C2AN36359C.
31   Beljebbar A, Dukic S, Amharref N, Manfait M. Ex vivo and in vivo diagnosis of C6 glioblastoma development by Raman spectroscopy coupled to a microprobe. Anal Bioanal Chem 2010;398(1):477–87. 10.1007/s00216-010-3910-6
doi: 10.1007/s00216-010-3910-6.
32   de Bourcy CF, De Vlaminck I, Kanbar JN, Wang J, Gawad C, Quake SR. A quantitative comparison of single-cell whole genome amplification methods. PLoS One 2014;9(8):e105585. 10.1371/journal.pone.0105585
doi: 10.1371/journal.pone.0105585.
33   Zhang Q, Wang T, Zhou Q, Zhang P, Gong Y, Gou H, et al. Development of a facile droplet-based single-cell isolation platform for cultivation and genomic analysis in microorganisms. Sci Rep 2017;7:41192. 10.1038/srep41192
doi: 10.1038/srep41192.
34   Xu P, Zheng X, Tao Y, Du W. Cross-interface emulsification for generating size-tunable droplets. Anal Chem 2016;88(6):3171–7. <DOI OutputMedium="All"/>
doi: 10.1021/acs.analchem.5b04510
35   Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA, Stares MD, et al. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 2016;533(7604):543–6. 10.1038/nature17645
doi: 10.1038/nature17645.
36   Lau JT, Whelan FJ, Herath I, Lee CH, Collins SM, Bercik P, et al. Capturing the diversity of the human gut microbiota through culture-enriched molecular profiling. Genome Med 2016;8(1):72.10.1186/s13073-016-0327-7
doi: 10.1186/s13073-016-0327-7.
37   Boedicker JQ, Li L, Kline TR, Ismagilov RF. Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab Chip 2008;8(8):1265–72. 10.1039/b804911d
doi: 10.1039/b804911d.
38   Eun YJ, Utada AS, Copeland MF, Takeuchi S, Weibel DB. Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation. ACS Chem Biol 2011;6(3):260–6. 10.1021/cb100336p
doi: 10.1021/cb100336p.
39   Jiang CY, Dong L, Zhao JK, Hu X, Shen C, Qiao Y, et al. High-throughput single-cell cultivation on microfluidic streak plates. Appl Environ Microbiol 2016;82(7):2210–8. 10.1128/AEM.03588-15
doi: 10.1128/AEM.03588-15.
40   Glass EM, Wilkening J, Wilke A, Antonopoulos S, Meyer F. Using the metagenomics RAST server (MG-RAST) for analyzing shotgun metagenomes. Cold Spring Harb Protoc 2010;2010(1):pdb.prot5368.
41   Seshadri R, Kravitz SA, Smarr L, Gilna P, Frazier M. CAMERA: a community resource for metagenomics. PLoS Biol 2007;5(3):e75. 10.1371/journal.pbio.0050075
doi: 10.1371/journal.pbio.0050075.
42   Shah N, Tang H, Doak TG, Ye Y. Comparing bacterial communities inferred from 16S rRNA gene sequencing and shotgun metagenomics. Pac Symp Biocomput 2011;16:165–76.
43   Mitra S, Stärk M, Huson DH. Analysis of 16S rRNA environmental sequences using MEGAN. BMC Genomics 2011;12(Suppl 3):S17. 10.1186/1471-2164-12-S3-S17
doi: 10.1186/1471-2164-12-S3-S17.
44   Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009;75(23):7537–41. 10.1128/AEM.01541-09
doi: 10.1128/AEM.01541-09.
45   Lozupone C, Knight R.UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 2005;71(12):8228–35. 10.1128/AEM.71.12.8228-8235.2005
doi: 10.1128/AEM.71.12.8228-8235.2005.
46   Hamady M, Lozupone C, Knight R. Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J 2010;4(1):17–27. 10.1038/ismej.2009.97
doi: 10.1038/ismej.2009.97.
47   Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010;7(5):335–6. 10.1038/nmeth.f.303
doi: 10.1038/nmeth.f.303.
48   Su X, Xu J, Ning K. Parallel-META: efficient metagenomic data analysis based on high-performance computation. BMC Syst Biol 2012;6(Suppl 1):S16. 10.1186/1752-0509-6-S1-S16
doi: 10.1186/1752-0509-6-S1-S16.
49   Su X, Pan W, Song B, Xu J, Ning K. Parallel-META 2.0: enhanced metagenomic data analysis with functional annotation, high performance computing and advanced visualization. PLoS One 2014;9(3):e89323. 10.1371/journal.pone.0089323
doi: 10.1371/journal.pone.0089323.
50   Jing G, Sun Z, Wang H, Gong Y, Huang S, Ning K, et al. Parallel-META 3: comprehensive taxonomical and functional analysis platform for efficient comparison of microbial communities. Sci Rep 2017;7:40371. 10.1038/srep40371
doi: 10.1038/srep40371.
51   Huang S, Li R, Zeng X, He T, Zhao H, Chang A, et al. Predictive modeling of gingivitis severity and susceptibility via oral microbiota. ISME J 2014;8(9):1768–80. 10.1038/ismej.2014.32
doi: 10.1038/ismej.2014.32.
52   Teng F, Yang F, Huang S, Bo C, Xu ZZ, Amir A, et al. Prediction of early childhood caries via spatial-temporal variations of oral microbiota. Cell Host Microbe 2015;18(3):296–306. 10.1016/j.chom.2015.08.005
doi: 10.1016/j.chom.2015.08.005.
53   Guo Z, Zhang J, Wang Z, Ang KY, Huang S, Hou Q, et al. Intestinal microbiota distinguish gout patients from healthy humans. Sci Rep 2016;6:20602. 10.1038/srep20602
doi: 10.1038/srep20602.
54   Baker JL, Bor B, Agnello M, Shi W, He X. Ecology of the oral microbiome: beyond bacteria. Trend Microbiol .Epub 2017 Jan 11.
Related
[1] Baohong Wang, Mingfei Yao, Longxian Lv, Zongxin Ling, Lanjuan Li. The Human Microbiota in Health and Disease[J]. Engineering, 2017, 3(1): 71 -82 .
[2] Marc Mac Giolla Eain, Joanna Baginska, Kacy Greenhalgh, Joëlle V. Fritz, Frederic Zenhausern, Paul Wilmes. Engineering Solutions for Representative Models of the Gastrointestinal Human-Microbe Interface[J]. Engineering, 2017, 3(1): 60 -65 .
[3] Yunhe Pan. Heading toward Artificial Intelligence 2.0[J]. Engineering, 2016, 2(4): 409 -413 .
[4] Yunhe Pan, Yun Tian, Xiaolong Liu, Dedao Gu, Gang Hua. Urban Big Data and the Development of City Intelligence[J]. Engineering, 2016, 2(2): 171 -178 .
[5] Sonia Bergamaschi,Emanuele Carlini,Michelangelo Ceci,Barbara Furletti,Fosca Giannotti,Donato Malerba,Mario Mezzanzanica,Anna Monreale,Gabriella Pasi,Dino Pedreschi,Raffele Perego,Salvatore Ruggieri. Big Data Research in Italy: A Perspective[J]. Engineering, 2016, 2(2): 163 -170 .
[6] Eric P. Xing,Qirong Ho,Pengtao Xie,Dai Wei. Strategies and Principles of Distributed Machine Learning on Big Data[J]. Engineering, 2016, 2(2): 179 -195 .
[7] Daniel Richard Leff, Guang-Zhong Yang. Big Data for Precision Medicine[J]. Engineering, 2015, 1(3): 277 -279 .
[8] Jihong Chen, Jianzhong Yang, Huicheng Zhou, Hua Xiang, Zhihong Zhu, Yesong Li, Chen-Han Lee, Guangda Xu. CPS Modeling of CNC Machine Tool Work Processes Using an Instruction-Domain Based Approach[J]. Engineering, 2015, 1(2): 247 -260 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
Today's visits ;Accumulated visits . 京ICP备11030251号-2

 Engineering