Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
3D Printing

Guest Editors-in-Chief (3D Printing)
Lu, Bingheng, Xi’an Jiaotong University, China
Mazumder, Jyotirmoy, University of Michigan, USA

Members (3D Printing)
Cheng, Gengdong, Dalian University of Technology, China
Chua, Cheekai, Nanyang Technological University, Singapore
Coddet, Christian, University of Technology of Belfort-Montbeliard, France
David, Bourell, University of Texas at Austin, USA
Günster, Jens, Federal Institute for Materials Research and Testing, Germany
Lewis, Jannifer, Harvard University, USA
Li, Lin, University of Manchester, UK
Sigmund, Ole, Technical University of Denmark, Denmark
Sun, Wei, Tsinghua University, China
Zhou, Jack, Drexel University, USA

Default Latest Most Read
Please wait a minute...
For Selected: View Abstracts Toggle Thumbnails
Development Trends in Additive Manufacturing and 3D Printing
Bingheng Lu, Dichen Li, Xiaoyong Tian
Engineering    2015, 1 (1): 85-89.   DOI: 10.15302/J-ENG-2015012
Abstract   HTML   PDF (241KB)

Additive manufacturing and 3D printing technology have been developing rapidly in the last 30 years, and indicate great potential for future development. The promising future of this technology makes its impact on traditional industry unpredictable. 3D printing will propel the revolution of fabrication modes forward, and bring in a new era for customized fabrication by realizing the five “any”s: use of almost any material to fabricate any part, in any quantity and any location, for any industrial field. Innovations in material, design, and fabrication processes will be inspired by the merging of 3D-printing technology and processes with traditional manufacturing processes. Finally, 3D printing will become as valuable for manufacturing industries as equivalent and subtractive manufacturing processes.

Reference | Related Articles | Metrics
3D Photo-Fabrication for Tissue Engineering and Drug Delivery
Rúben F. Pereira, Paulo J. Bártolo
Engineering    2015, 1 (1): 90-112.   DOI: 10.15302/J-ENG-2015015
Abstract   HTML   PDF (13414KB)

The most promising strategies in tissue engineering involve the integration of a triad of biomaterials, living cells, and biologically active molecules to engineer synthetic environments that closely mimic the healing milieu present in human tissues, and that stimulate tissue repair and regeneration. To be clinically effective, these environments must replicate, as closely as possible, the main characteristics of the native extracellular matrix (ECM) on a cellular and subcellular scale. Photo-fabrication techniques have already been used to generate 3D environments with precise architectures and heterogeneous composition, through a multi-layer procedure involving the selective photocrosslinking reaction of a light-sensitive prepolymer. Cells and therapeutic molecules can be included in the initial hydrogel precursor solution, and processed into 3D constructs. Recently, photo-fabrication has also been explored to dynamically modulate hydrogel features in real time, providing enhanced control of cell fate and delivery of bioactive compounds. This paper focuses on the use of 3D photo-fabrication techniques to produce advanced constructs for tissue regeneration and drug delivery applications. State-of-the-art photo-fabrication techniques are described, with emphasis on the operating principles and biofabrication strategies to create spatially controlled patterns of cells and bioactive factors. Considering its fast processing, spatiotemporal control, high resolution, and accuracy, photo-fabrication is assuming a critical role in the design of sophisticated 3D constructs. This technology is capable of providing appropriate environments for tissue regeneration, and regulating the spatiotemporal delivery of therapeutics.

Table and Figures | Reference | Related Articles | Metrics
Additive Manufacture of Ceramics Components by Inkjet Printing
Brian Derby
Engineering    2015, 1 (1): 113-123.   DOI: 10.15302/J-ENG-2015014
Abstract   HTML   PDF (2218KB)

In order to build a ceramic component by inkjet printing, the object must be fabricated through the interaction and solidification of drops, typically in the range of 10−100 pL. In order to achieve this goal, stable ceramic inks must be developed. These inks should satisfy specific rheological conditions that can be illustrated within a parameter space defined by the Reynolds and Weber numbers. Printed drops initially deform on impact with a surface by dynamic dissipative processes, but then spread to an equilibrium shape defined by capillarity. We can identify the processes by which these drops interact to form linear features during printing, but there is a poorer level of understanding as to how 2D and 3D structures form. The stability of 2D sheets of ink appears to be possible over a more limited range of process conditions that is seen with the formation of lines. In most cases, the ink solidifies through evaporation and there is a need to control the drying process to eliminate the: “coffee ring” defect. Despite these uncertainties, there have been a large number of reports on the successful use of inkjet printing for the manufacture of small ceramic components from a number of different ceramics. This technique offers good prospects as a future manufacturing technique. This review identifies potential areas for future research to improve our understanding of this manufacturing method.

Table and Figures | Reference | Related Articles | Metrics
Dual-Material Electron Beam Selective Melting: Hardware Development and Validation Studies
Chao Guo, Wenjun Ge, Feng Lin
Engineering    2015, 1 (1): 124-130.   DOI: 10.15302/J-ENG-2015013
Abstract   HTML   PDF (9569KB)

Electron beam selective melting (EBSM) is an additive manufacturing technique that directly fabricates three-dimensional parts in a layerwise fashion by using an electron beam to scan and melt metal powder. In recent years, EBSM has been successfully used in the additive manufacturing of a variety of materials. Previous research focused on the EBSM process of a single material. In this study, a novel EBSM process capable of building a gradient structure with dual metal materials was developed, and a powder-supplying method based on vibration was put forward. Two different powders can be supplied individually and then mixed. Two materials were used in this study: Ti6Al4V powder and Ti47Al2Cr2Nb powder. Ti6Al4V has excellent strength and plasticity at room temperature, while Ti47Al2Cr2Nb has excellent performance at high temperature, but is very brittle. A Ti6Al4V/Ti47Al2Cr2Nb gradient material was successfully fabricated by the developed system. The microstructures and chemical compositions were characterized by optical microscopy, scanning microscopy, and electron microprobe analysis. Results showed that the interface thickness was about 300 μm. The interface was free of cracks, and the chemical compositions exhibited a staircase-like change within the interface.

Table and Figures | Reference | Related Articles | Metrics
Bioprinting-Based High-Throughput Fabrication of Three-Dimensional MCF-7 Human Breast Cancer Cellular Spheroids
Kai Ling, Guoyou Huang, Juncong Liu, Xiaohui Zhang, Yufei Ma, Tianjian Lu, Feng Xu
Engineering    2015, 1 (2): 269-274.   DOI: 10.15302/J-ENG-2015062
Abstract   HTML   PDF (3266KB)

Cellular spheroids serving as three-dimensional (3D) in vitro tissue models have attracted increasing interest for pathological study and drug-screening applications. Various methods, including microwells in particular, have been developed for engineering cellular spheroids. However, these methods usually suffer from either destructive molding operations or cell loss and non-uniform cell distribution among the wells due to two-step molding and cell seeding. We have developed a facile method that utilizes cell-embedded hydrogel arrays as templates for concave well fabrication and in situ MCF-7 cellular spheroid formation on a chip. A custom-built bioprinting system was applied for the fabrication of sacrificial gelatin arrays and sequentially concave wells in a high-throughput, flexible, and controlled manner. The ability to achieve in situ cell seeding for cellular spheroid construction was demonstrated with the advantage of uniform cell seeding and the potential for programmed fabrication of tissue models on chips. The developed method holds great potential for applications in tissue engineering, regenerative medicine, and drug screening.

Table and Figures | Reference | Related Articles | Metrics
Design and 3D Printing of Scaffolds and Tissues
Jia An, Joanne Ee Mei Teoh, Ratima Suntornnond, Chee Kai Chua
Engineering    2015, 1 (2): 261-268.   DOI: 10.15302/J-ENG-2015061
Abstract   HTML   PDF (2059KB)

A growing number of?three-dimensional (3D)-print-ing processes have been applied to tissue engineering. This paper presents a state-of-the-art study of 3D-printing technologies?for tissue-engineering applications, with particular focus on the development of a computer-aided scaffold design system; the direct 3D printing of functionally graded scaffolds; the modeling of selective laser sintering (SLS) and fused deposition modeling (FDM) processes; the indirect additive manufacturing of scaffolds, with both micro and macro features; the development of a bioreactor; and 3D/4D bioprinting. Technological limitations will be discussed so as to highlight the possibility of future improvements for new 3D-printing methodologies for tissue engineering.

Table and Figures | Reference | Related Articles | Metrics
Exploiting Additive Manufacturing Infill in Topology Optimization for Improved Buckling Load
Anders Clausen, Niels Aage, Ole Sigmund
Engineering    2016, 2 (2): 250-257.   DOI: 10.1016/J.ENG.2016.02.006
Abstract   HTML   PDF (2383KB)

Additive manufacturing (AM) permits the fabrication of functionally optimized components with high geometrical complexity. The opportunity of using porous infill as an integrated part of the manufacturing process is an example of a unique AM feature. Automated design methods are still incapable of fully exploiting this design freedom. In this work, we show how the so-called coating approach to topology optimization provides a means for designing infill-based components that possess a strongly improved buckling load and, as a result, improved structural stability. The suggested approach thereby addresses an important inadequacy of the standard minimum compliance topology optimization approach, in which buckling is rarely accounted for; rather, a satisfactory buckling load is usually assured through a post-processing step that may lead to sub-optimal components. The present work compares the standard and coating approaches to topology optimization for the MBB beam benchmark case. The optimized structures are additively manufactured using a filamentary technique. This experimental study validates the numerical model used in the coating approach. Depending on the properties of the infill material, the buckling load may be more than four times higher than that of solid structures optimized under the same conditions.

Table and Figures | Reference | Related Articles | Metrics
First page | Prev page | Next page | Last page Page 1 of 1, 7 articles found  
Current Issue
Volume 2 • Issue 4 •
· News & Highlights
· Views & Comments
· Research
Table of Contents
Most Popular
Most Read
Most Download
Most Cited

Copyright © 2015 Chinese Academy of Engineering & Engineering Sciences Press, All Rights Reserved.
Today's visits ;Accumulated visits . 京ICP备11030251号-2