Submit  |   Chinese  | 
 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Focus
[Online] Rail Transit

Guest Editors-in-Chief
He, Huawu, China Railway Corporation, China
Leboeuf, Micheal, UIC Intercity & High Speed Committee, France
 
Members
Bruni, Stefano, Polytechnic University of Milan, Italy
Ding, Rongjun, CRRC Zhuzhou Institute Co., Ltd., China
Gautier, Pierre-Etienne, SYSTRA, France
Liang, Wenhao, China Railway First Survey & Design Institute Group Co., Ltd., China
Mcnaughton, Andrew, High Speed Two (HS2) Limited, UK
Pita, Andrés López, Polytechnic University of Catalonia, Spain
Reinschmidt, Albert, Transportation Technology Center, Inc., USA
Roberts, Clive, University of Birmingham, UK
Romo, Eduardo, Fundacion Caminos de Hierro, Spain
Shi, Weizhong, China Academy of Railway Sciences, China
Zarembski, Allan M., University of Delaware, USA
Default Latest Most Read
Please wait a minute...
For Selected: View Abstracts Toggle Thumbnails
High-Speed EMU TCMS Design and LCC Technology Research
Hongwei Zhao, Zhiping Huang, Ying Mei
Engineering    2017, 3 (1): 122-129.   https://doi.org/10.1016/J.ENG.2017.01.004
Abstract   HTML   PDF (3997KB)

This paper introduces the high-speed electrical multiple unit (EMU) life cycle, including the design, manufacturing, testing, and maintenance stages. It also presents the train control and monitoring system (TCMS) software development platform, the TCMS testing and verification bench, the EMU driving simulation platform, and the EMU remote data transmittal and maintenance platform. All these platforms and benches combined together make up the EMU life cycle cost (LCC) system. Each platform facilitates EMU LCC management and is an important part of the system.

Table and Figures | Reference | Related Articles | Metrics
How to Deal with Revolutions in Train Control Systems
Hideo Nakamura
Engineering    2016, 2 (3): 380-386.   https://doi.org/10.1016/J.ENG.2016.03.015
Abstract   HTML   PDF (6367KB)

Train control systems ensure the safety of railways. This paper begins with a summary of the typical train control systems in Japan and Europe. Based on this summary, the author then raises the following question regarding current train control systems: What approach should be adopted in order to enhance the functionality, safety, and reliability of train control systems and assist in commercial operations on railways? Next, the author provides a desirable architecture that is likely to assist with the development of new train control systems based on current information and communication technologies. A new unified train control system (UTCS) is proposed that is effective in enhancing the robustness and competitiveness of a train control system. The ultimate architecture of the UTCS will be only composed of essential elements such as point machines and level crossing control devices in the field. Finally, a processing method of the UTCS is discussed.

Table and Figures | Reference | Related Articles | Metrics
Influence and Control Strategy for Local Settlement for High-Speed Railway Infrastructure
Gaoliang Kang
Engineering    2016, 2 (3): 374-379.   https://doi.org/10.1016/J.ENG.2016.03.014
Abstract   HTML   PDF (5758KB)

This paper discusses the main impact factors of the local settlement and differential settlement of high-speed railway lines. The analysis results show that groundwater exploitation is the direct cause of differential settlement. Based on the study of ballastless track additional load and of vehicle, track, and bridge dynamic responses under different differential settlements, a control standard of differential settlement during operation is proposed preliminarily.

Table and Figures | Reference | Related Articles | Metrics
High-Speed Railway Train Timetable Conflict Prediction Based on Fuzzy Temporal Knowledge Reasoning
He Zhuang, Liping Feng, Chao Wen, Qiyuan Peng, Qizhi Tang
Engineering    2016, 2 (3): 366-373.   https://doi.org/10.1016/J.ENG.2016.03.019
Abstract   HTML   PDF (7164KB)

Trains are prone to delays and deviations from train operation plans during their operation because of internal or external disturbances. Delays may develop into operational conflicts between adjacent trains as a result of delay propagation, which may disturb the arrangement of the train operation plan and threaten the operational safety of trains. Therefore, reliable conflict prediction results can be valuable references for dispatchers in making more efficient train operation adjustments when conflicts occur. In contrast to the traditional approach to conflict prediction that involves introducing random disturbances, this study addresses the issue of the fuzzification of time intervals in a train timetable based on historical statistics and the modeling of a high-speed railway train timetable based on the concept of a timed Petri net. To measure conflict prediction results more comprehensively, we divided conflicts into potential conflicts and certain conflicts and defined the judgment conditions for both. Two evaluation indexes, one for the deviation of a single train and one for the possibility of conflicts between adjacent train operations, were developed using a formalized computation method. Based on the temporal fuzzy reasoning method, with some adjustment, a new conflict prediction method is proposed, and the results of a simulation example for two scenarios are presented. The results prove that conflict prediction after fuzzy processing of the time intervals of a train timetable is more reliable and practical and can provide helpful information for use in train operation adjustment, train timetable improvement, and other purposes.





Referred to by
He Zhuang,Liping Feng,Chao Wen, et al. Corrigendum to “High-Speed Railway Train Timetable Conflict Prediction Based on Fuzzy Temporal Knowledge Reasoning” [Engineering (2016) 366–373][J]. Engineering, 10.1016/J.ENG.2017.01.002 

Table and Figures | Reference | Related Articles | Metrics
New Monitoring Technologies for Overhead Contact Line at 400 km·h−1
Chul Jin Cho, Young Park
Engineering    2016, 2 (3): 360-365.   https://doi.org/10.1016/J.ENG.2016.03.016
Abstract   HTML   PDF (6737KB)

Various technologies have recently been developed for high-speed railways, in order to boost commercial speeds from 300 km·h−1to 400 km·h−1. Among these technologies, this paper introduces the 400 km·h−1 class current collection performance evaluation methods that have been developed and demonstrated by Korea. Specifically, this paper reports details of the video-based monitoring techniques that have been adopted to inspect the stability of overhead contact line (OCL) components at 400 km·h−1 without direct contact with any components of the power supply system. Unlike conventional OCL monitoring systems, which detect contact wire positions using either laser sensors or line cameras, the developed system measures parameters in the active state by video data. According to experimental results that were obtained at a field-test site established at a commercial line, it is claimed that the proposed measurement system is capable of effectively measuring OCL parameters.

Table and Figures | Reference | Related Articles | Metrics
The World’s Longest Tunnel
Lance A. Davis
Engineering    2016, 2 (3): 263-264.   https://doi.org/10.1016/J.ENG.2016.03.013
Abstract   HTML   PDF (1774KB)
 
Table and Figures | Reference | Related Articles | Metrics
A Train-Bridge Dynamic Interaction Analysis Method and Its Experimental Validation
Nan Zhang, Yuan Tian, He Xia
Engineering    2016, 2 (4): 528-536.   https://doi.org/10.1016/J.ENG.2016.04.012
Abstract   PDF (2289KB)

The train-bridge dynamic interaction problem began with the development of railway technology, and requires an evaluation method for bridge design in order to ensure the safety and stability of the bridge and the running train. This problem is studied using theoretical analysis, numerical simulation, and experimental study. In the train-bridge dynamic interaction system proposed in this paper, the train vehicle model is established by the rigid-body dynamics method, the bridge model is established by the finite element method, and the wheel/rail vertical and lateral interaction are simulated by the corresponding assumption and the Kalker linear creep theory, respectively. Track irregularity, structure deformation, wind load, collision load, structural damage, foundation scouring, and earthquake action are regarded as the excitation for the system. The train-bridge dynamic interaction system is solved by inter-history iteration. A case study of the dynamic response of a CRH380BL high-speed train running through a standard-design bridge in China is discussed. The dynamic responses of the vehicle and of the bridge subsystems are obtained for speeds ranging from 200 km·h-1 to 400 km·h-1, and the vibration mechanism are analyzed.

Table and Figures | Reference | Related Articles | Metrics
First page | Prev page | Next page | Last page Page 1 of 1, 11 articles found  
Current Issue
Volume 4 • Issue 2 •
· News & Highlights
· Views & Comments
· Topic Insights
· Research
Table of Contents
Most Popular
Most Read
Most Download
Most Cited

Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
京ICP备11030251号-2

 Engineering