Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
[Online] Bridge Engineering

Guest Editors-in-Chief 
Yongbin Yang, Chongqing University, China
A.Kareem, University of Notre Dame, USA
Executive Associate Editors
Yaojun Ge, Tongji University, China
J. Turmo, UPC Barcelona Tech, Spain
David Nethercot, Imperial College, UK
G. G. Deierlein, Stanford University, USA
H. A. Mang, Vienna University of Technology, Austria
Hyun-Moo Koh, Seoul National University, South Korea
Jielian Zheng, Guangxi University, China
Jingquan Wang, PLA University of Science and Technology, China
Paul Gauvreau, University of Toronto, Canada
S. Kitipornchai, University of Queensland, Australia
Wenzhong Deng, T.Y. Lin International, USA
Yozo Fujino, Yokohama National University, Japan
Yuanpei Lin, Shanghai Municipal Engineering Design Institute, China.
Zhengqing Chen, Hunan University, China
Default Latest Most Read
Please wait a minute...
For Selected: View Abstracts Toggle Thumbnails
Developments and Prospects of Long-Span High-Speed Railway Bridge Technologies in China
Shunquan Qin, Zongyu Gao
Engineering    2017, 3 (6): 787-794.
Abstract   PDF (3022KB)

With the rapid developments of the high-speed railway in China, a great number of long-span bridges have been constructed in order to cross rivers and gorges. At present, the longest main span of a constructed high-speed railway bridge is only 630 m. The main span of Hutong Yangtze River Bridge and of Wufengshan Yangtze River Bridge, which are under construction, will be much longer, at 1092 m each. In order to overcome the technical issues that originate from the extremely large dead loading and the relatively small structural stiffness of long-span high-speed railway bridges, many new technologies in bridge construction, design, materials, and so forth have been developed. This paper carefully reviews progress in the construction technologies of multi-function combined bridges in China, including combined highway and railway bridges and multi-track railway bridges. Innovations and practices regarding new types of bridge and composite bridge structures, such as bridges with three cable planes and three main trusses, inclined main trusses, slab-truss composite sections, and steel-concrete composite sections, are introduced. In addition, investigations into high-performance materials and integral fabrication and erection techniques for long-span railway bridges are summarized. At the end of the paper, prospects for the future development of long-span high-speed railway bridges are provided.

Reference | Related Articles | Metrics
Fatigue Strength Evaluation of Resin-Injected Bolted Connections Using Statistical Analysis
José António Fonseca de Oliveira Correia, Bruno Alexandre Silva Pedrosa, Patrícia Cordeiro Raposo, Abílio Manuel Pinho De Jesus, Helena Maria dos Santos Gervásio, Grzegorz Stanisław Lesiuk, Carlos Alberto da Silva Rebelo, Rui Artur Bartólo Calçada, Luís Alberto Proença Simões da Silva
Engineering    2017, 3 (6): 795-805.
Abstract   PDF (2919KB)

Different strategies can be used to perform reparations and reinforcements of ancient bolted and riveted metallic bridges. As the riveting process is not currently a common practice, it requires proper equipment and skilled workers. Another solution is the use of welding. However, the weldability of old steels is poor. Bolts are very attractive alternative solutions, and are most commonly used to repair old metallic bridges. Fitted bolts are expensive solutions; the alternative is the use of resin-injected bolts. The behavior of bolted joints with preloaded resin-injected bolts has been studied using quasi-static and creep tests; however, few studies on the slip and fatigue behavior of these joints can be found in the literature. This paper presents an overview of a few experimental programs that were carried out by several authors aiming at evaluating the fatigue behavior of single and double shear resin-injected bolted connections. A comparison between the experimental data of joints with preloaded standard bolts and preloaded resininjected bolts shows a fatigue strength reduction in the latter. Since Eurocode 3 (EC3) suggests the same fatigue strength curve for joints made of resin-injected bolts and standard bolts, this may raise some concerns. Furthermore, research on the feasibility of using both bonded and bolted connections is shown. This last study was performed with high-strength low-alloy structural steel plates and an acrylic structural adhesive for metal bonding. For both case studies, a statistical analysis is performed on fatigue experimental data using linearized boundaries and the Castillo and Fernández-Canteli model. Fatigue design curves are proposed and compared with the design suggestions of several European and North American standards.

Reference | Related Articles | Metrics
A Simplified Nonlinear Model of Vertical Vortex-Induced Force on Box Decks for Predicting Stable Amplitudes of Vortex-Induced Vibrations
Le-Dong Zhu, Xiao-Liang Meng, Lin-Qing Du, Ming-Chang Ding
Engineering    2017, 3 (6): 854-862.
Abstract   PDF (3012KB)

Wind-tunnel tests of a large-scale sectional model with synchronous measurements of force and vibration responses were carried out to investigate the nonlinear behaviors of vertical vortex-induced forces (VIFs) on three typical box decks (i.e., fully closed box, centrally slotted box, and semi-closed box). The mechanisms of the onset, development, and self-limiting phenomenon of the vertical vortex-induced vibration (VIV) were also explored by analyzing the energy evolution of different vertical VIF components and their contributions to the vertical VIV responses. The results show that the nonlinear components of the vertical VIF often differ from deck to deck; the most important components of the vertical VIF, governing the stable amplitudes of the vertical VIV responses, are the linear and cubic components of velocity contained in the self-excited aerodynamic damping forces. The former provides a constant negative damping ratio to the vibration system and is thus the essential power driving the development of the VIV amplitude, while the latter provides a positive damping ratio proportional to the square of the vibration velocity and is actually the inherent factor making the VIV amplitude self-limiting. On these bases, a universal simplified nonlinear mathematical model of the vertical VIF on box decks of bridges is presented and verified in this paper; it can be used to predict the stable amplitudes of the vertical VIV of long-span bridges with satisfactory accuracy.

Reference | Related Articles | Metrics
A Comparative Assessment of Aerodynamic Models for Buffeting and Flutter of Long-Span Bridges
Igor Kavrakov, Guido Morgenthal
Engineering    2017, 3 (6): 823-838.
Abstract   PDF (4590KB)

Wind-induced vibrations commonly represent the leading criterion in the design of long-span bridges. The aerodynamic forces in bridge aerodynamics are mainly based on the quasi-steady and linear unsteady theory. This paper aims to investigate different formulations of self-excited and buffeting forces in the time domain by comparing the dynamic response of a multi-span cable-stayed bridge during the critical erection condition. The bridge is selected to represent a typical reference object with a bluff concrete box girder for large river crossings. The models are viewed from a perspective of model complexity, comparing the influence of the aerodynamic properties implied in the aerodynamic models, such as aerodynamic damping and stiffness, fluid memory in the buffeting and self-excited forces, aerodynamic nonlinearity, and aerodynamic coupling on the bridge response. The selected models are studied for a windspeed range that is typical for the construction stage for two levels of turbulence intensity. Furthermore, a simplified method for the computation of buffeting forces including the aerodynamic admittance is presented, in which rational approximation is avoided. The critical flutter velocities are also compared for the selected models under laminar flow.

Reference | Related Articles | Metrics
Mechanical Behavior of a Partially Encased Composite Girder with Corrugated Steel Web: Interaction of Shear and Bending
Jun He, Sihao Wang, Yuqing Liu, Zhan Lyu, Chuanxi Li
Engineering    2017, 3 (6): 806-816.
Abstract   PDF (2740KB)

The synergistic use of partially encased concrete and composite girders with corrugated steel webs (CGCSWs) has been proposed to avoid the buckling of corrugated steel webs and compression steel flanges under large combined shear force and bending moment in the hogging area. First, model tests were carried out on two specimens with different shear spans to investigate the mechanical behavior, including the load-carrying capacity, failure modes, flexural and shear stress distribution, and development of concrete cracking. Experimental results show that the interaction of shear force and bending moment causes the failure of specimens. The bending-to-shear ratio does not affect the shear stiffness of a composite girder in the elastic stage when concrete cracking does not exist, but significantly influences the shear stiffness after concrete cracking. In addition, composite sections in the elastic stage satisfy the assumption of the plane section under combined shear force and bending moment. However, after concrete cracking in the tension field, the normal stresses of a corrugated web in the tension area become small due to the ‘‘accordion effect,” with almost zero stress at the flat panels but recognizable stress at the inclined panels. Second, three-dimensional finite-element (FE) models considering material and geometric nonlinearity were built and validated by experiments, and parametric analyses were conducted on composite girders with different lengths and heights to determine their load-carrying capacity when subjected to combined loads. Finally, an interaction formula with respect to shear and flexural strength is offered on the basis of experimental and numerical results in order to evaluate the loadcarrying capacity of such composite structures, thereby providing a reference for the design of partially encased composite girders with corrugated steel webs (PECGCSWs) under combined flexural and shear loads.

Reference | Related Articles | Metrics
Wind-Tunnel Investigation of the Aerodynamic Performance of Surface-Modification Cables
Hiroshi Katsuchi, Hitoshi Yamada, Ippei Sakaki, Eiichi Okado
Engineering    2017, 3 (6): 817-822.
Abstract   PDF (2900KB)

The wind-induced vibration of stay cables of cable-stayed bridges, which includes rain-wind-induced vibration (RWIV) and dry galloping (DG), has been studied for a considerable amount of time. In general, mechanical dampers or surface modification are applied to suppress the vibration. In particular, several types of surface-modification cable, including indentation, longitudinally parallel protuberance, helical fillet, and U-shaped grooving, have been developed. Recently, a new type of aerodynamically stable cable with spiral protuberances was developed. It was confirmed that the cable has a low drag force coefficient, like an indented cable, and that it prevented the formation of water rivulets on the cable surface. In this study, the stability for RWIV of this cable was investigated with various flow angles and protuberance dimensions in a wind-tunnel test. It was found that the spiral protuberance cable is aerodynamically stable against both RWIV and DG for all test wind angles. The effects of the protuberance dimensions were also clarified.

Reference | Related Articles | Metrics
Damping Identification of Bridges Under Nonstationary Ambient Vibration
Sunjoong Kim, Ho-Kyung Kim
Engineering    2017, 3 (6): 839-844.
Abstract   PDF (1623KB)

This research focuses on identifying the damping ratio of bridges using nonstationary ambient vibration data. The damping ratios of bridges in service have generally been identified using operational modal analysis (OMA) based on a stationary white noise assumption for input signals. However, most bridges are generally subjected to nonstationary excitations while in service, and this violation of the basic assumption can lead to uncertainties in damping identification. To deal with nonstationarity, an amplitude-modulating function was calculated from measured responses to eliminate global trends caused by nonstationary input. A natural excitation technique (NExT)-eigensystem realization algorithm (ERA) was applied to estimate the damping ratio for a stationarized process. To improve the accuracy of OMA-based damping estimates, a comparative analysis was performed between an extracted stationary process and nonstationary data to assess the effect of eliminating nonstationarity. The mean value and standard deviation of the damping ratio for the first vertical mode decreased after signal stationarization.

Reference | Related Articles | Metrics
Investigation of Turbulence Effects on the Aeroelastic Properties of a Truss Bridge Deck Section
Hoang Trong Lam, Hiroshi Katsuchi, Hitoshi Yamada
Engineering    2017, 3 (6): 845-853.
Abstract   PDF (1879KB)

This paper presents the flutter derivatives (FDs) extracted from a stochastic system identification (SSI) method under different turbulent flows. The objective of the study is to investigate the effects of oncoming turbulence on the flutter of suspended long-span bridges using a section model wind-tunnel test. Several wind-tunnel tests were performed on a truss bridge deck section with different oncoming turbulent properties involving reduced turbulence intensities and turbulent scales. This study includes an investigation of the effect of oncoming flows on modal dynamic responses. The transient and buffeting response data from the wind-tunnel test are analyzed using the system identification technique in extracting FDs, and the difficulties involved in this method are discussed. The time-domain SSI is applied to extract all FDs simultaneously from one and two degree-of-freedom (1DOF and 2DOF) systems. Finally, the results under different conditions are discussed and conclusions are formed.

Reference | Related Articles | Metrics
First page | Prev page | Next page | Last page Page 1 of 1, 8 articles found  
Current Issue
Volume 3 • Issue 6 •
· Editorial
· News & Highlights
· Research
Table of Contents
Most Popular
Most Read
Most Download
Most Cited

Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
Today's visits ;Accumulated visits . 京ICP备11030251号-2