Submit  |   Chinese  | 
 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Most Read
Published in last 1 year |  In last 2 years |  In last 3 years |  All
Please wait a minute...
For Selected: View Abstracts Toggle Thumbnails
Heading toward Artificial Intelligence 2.0
Yunhe Pan
Engineering    2016, 2 (4): 409-413.   DOI: 10.1016/J.ENG.2016.04.018
Abstract   HTML   PDF (452KB)

With the popularization of the Internet, permeation of sensor networks, emergence of big data, increase in size of the information community, and interlinking and fusion of data and information throughout human society, physical space, and cyberspace, the information environment related to the current development of artificial intelligence (AI) has profoundly changed. AI faces important adjustments, and scientific foundations are confronted with new breakthroughs, as AI enters a new stage: AI 2.0. This paper briefly reviews the 60-year developmental history of AI, analyzes the external environment promoting the formation of AI 2.0 along with changes in goals, and describes both the beginning of the technology and the core idea behind AI 2.0 development. Furthermore, based on combined social demands and the information environment that exists in relation to Chinese development, suggestions on the development of AI 2.0 are given.

Reference | Related Articles | Metrics
Reflections on the Three Gorges Project since Its Operation
Shouren Zheng
Engineering    2016, 2 (4): 389-397.   DOI: 10.1016/J.ENG.2016.04.002
Abstract   HTML   PDF (1593KB)
 
Table and Figures | Reference | Related Articles | Metrics
Emerging Trends for Microbiome Analysis: From Single-Cell Functional Imaging to Microbiome Big Data
Jian Xu, Bo Ma, Xiaoquan Su, Shi Huang, Xin Xu, Xuedong Zhou, Wei Huang, Rob Knight
Engineering    2017, 3 (1): 66-70.   DOI: 10.1016/J.ENG.2017.01.020
Abstract   HTML   PDF (813KB)

Method development has always been and will continue to be a core driving force of microbiome science. In this perspective, we argue that in the next decade, method development in microbiome analysis will be driven by three key changes in both ways of thinking and technological platforms: ① a shift from dissecting microbiota structureby sequencing to tracking microbiota state, function, and intercellular interaction via imaging; ② a shift from interrogating a consortium or population of cells to probing individual cells; and ③ a shift from microbiome data analysis to microbiome data science. Some of the recent method-development efforts by Chinese microbiome scientists and their international collaborators that underlie these technological trends are highlighted here. It is our belief that the China Microbiome Initiative has the opportunity to deliver outstanding “Made-in-China” tools to the international research community, by building an ambitious, competitive, and collaborative program at the forefront of method development for microbiome science.

Table and Figures | Reference | Related Articles | Metrics
Sustainable Application of a Novel Water Cycle Using Seawater for Toilet Flushing
Xiaoming Liu, Ji Dai, Di Wu, Feng Jiang, Guanghao Chen, Ho-Kwong Chui, Mark C. M. van Loosdrecht
Engineering    2016, 2 (4): 460-469.   DOI: 10.1016/J.ENG.2016.04.013
Abstract   HTML   PDF (3630KB)

Global water security is a severe issue that threatens human health and well-being. Finding sustainable alternative water resources has become a matter of great urgency. For coastal urban areas, desalinated seawater could serve as a freshwater supply. However, since 20%–30% of the water supply is used for flushing waste from the city, seawater with simple treatment could also partly replace the use of freshwater. In this work, the freshwater saving potential and environmental impacts of the urban water system (water-wastewater closed loop) adopting seawater desalination, seawater for toilet flushing (SWTF), or reclaimed water for toilet flushing (RWTF) are compared with those of a conventional freshwater system, through a life-cycle assessment and sensitivity analysis. The potential applications of these processes are also assessed. The results support the environmental sustainability of the SWTF approach, but its potential application depends on the coastal distance and effective population density of a city. Developed coastal cities with an effective population density exceeding 3000 persons·km–2 and located less than 30?km from the seashore (for the main pipe supplying seawater to the city) would benefit from applying SWTF, regardless of other impact parameters. By further applying the sulfate reduction, autotrophic denitrification, and nitrification integrated (SANI) process for wastewater treatment, the maximum distance from the seashore can be extended to 60?km. Considering that most modern urbanized cities fulfill these criteria, the next generation of water supply systems could consist of a freshwater supply coupled with a seawater supply for sustainable urban development.

Table and Figures | Reference | Related Articles | Metrics
The Cemented Material Dam: A New, Environmentally Friendly Type of Dam
Jinsheng Jia, Michel Lino, Feng Jin, Cuiying Zheng
Engineering    2016, 2 (4): 490-497.   DOI: 10.1016/J.ENG.2016.04.003
Abstract   HTML   PDF (2412KB)

The first author proposed the concept of the cemented material dam (CMD) in 2009. This concept was aimed at building an environmentally friendly dam in a safer and more economical way for both the dam and the area downstream. The concept covers the cemented sand, gravel, and rock dam (CSGRD), the rockfill concrete (RFC) dam (or the cemented rockfill dam, CRD), and the cemented soil dam (CSD). This paper summarizes the concept and principles of the CMD based on studies and practices in projects around the world. It also introduces new developments in the CSGRD, CRD, and CSD.

Table and Figures | Reference | Related Articles | Metrics
Biophysical Regulation of Cell Behavior—Cross Talk between Substrate Stiffness and Nanotopography
Yong Yang, Kai Wang, Xiaosong Gu, Kam W. Leong
Engineering    2017, 3 (1): 36-54.   DOI: 10.1016/J.ENG.2017.01.014
Abstract   HTML   PDF (5075KB)

The stiffness and nanotopographical characteristics of the extracellular matrix (ECM) influence numerous developmental, physiological, and pathological processes in vivo. These biophysical cues have therefore been applied to modulate almost all aspects of cell behavior, from cell adhesion and spreading to proliferation and differentiation. Delineation of the biophysical modulation of cell behavior is critical to the rational design of new biomaterials, implants, and medical devices. The effects of stiffness and topographical cues on cell behavior have previously been reviewed, respectively; however, the interwoven effects of stiffness and nanotopographical cues on cell behavior have not been well described, despite similarities in phenotypic manifestations. Herein, we first review the effects of substrate stiffness and nanotopography on cell behavior, and then focus on intracellular transmission of the biophysical signals from integrins to nucleus. Attempts are made to connect extracellular regulation of cell behavior with the biophysical cues. We then discuss the challenges in dissecting the biophysical regulation of cell behavior and in translating the mechanistic understanding of these cues to tissue engineering and regenerative medicine.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
A Breakthrough in the Industrialization of Manufacturing Technology for New Mainstream Low-GWP Refrigerants in China
Shuhua Wang,Weidong Zhu,Yan Zhang,Lihong Su,Bo Yang
Engineering    2017, 3 (3): 280-.   DOI: 10.1016/J.ENG.2017.03.001
Abstract   HTML   PDF (387KB)
Reference | Related Articles | Metrics
Clean Coal Technologies in China: Current Status and Future Perspectives
Shiyan Chang, Jiankun Zhuo, Shuo Meng, Shiyue Qin, Qiang Yao
Engineering    2016, 2 (4): 447-459.   DOI: 10.1016/J.ENG.2016.04.015
Abstract   HTML   PDF (2155KB)

Coal is the dominant primary energy source in China and the major source of greenhouse gases and air pollutants. To facilitate the use of coal in an environmentally satisfactory and economically viable way, clean coal technologies (CCTs) are necessary. This paper presents a review of recent research and development of four kinds of CCTs: coal power generation; coal conversion; pollution control; and carbon capture, utilization, and storage. It also outlines future perspectives on directions for technology research and development (R&D). This review shows that China has made remarkable progress in the R&D of CCTs, and that a number of CCTs have now entered into the commercialization stage.

Table and Figures | Reference | Related Articles | Metrics
Regenerative Engineering for Knee Osteoarthritis Treatment: Biomaterials and Cell-Based Technologies
Jorge L. Escobar Ivirico, Maumita Bhattacharjee, Emmanuel Kuyinu, Lakshmi S. Nair, Cato T. Laurencin
Engineering    2017, 3 (1): 16-27.   DOI: 10.1016/J.ENG.2017.01.003
Abstract   HTML   PDF (1352KB)

Knee osteoarthritis (OA) is the most common form of arthritis worldwide. The incidence of this disease is rising and its treatment poses an economic burden. Two early targets of knee OA treatment include the predominant symptom of pain, and cartilage damage in the knee joint. Current treatments have been beneficial in treating the disease but none is as effective as total knee arthroplasty (TKA). However, while TKA is an end-stage solution of the disease, it is an invasive and expensive procedure. Therefore, innovative regenerative engineering strategies should be established as these could defer or annul the need for a TKA. Several biomaterial and cell-based therapies are currently in development and have shown early promise in both preclinical and clinical studies. The use of advanced biomaterials and stem cells independently or in conjunction to treat knee OA could potentially reduce pain and regenerate focal articular cartilage damage. In this review, we discuss the pathogenesis of pain and cartilage damage in knee OA and explore novel treatment options currently being studied, along with some of their limitations.

Table and Figures | Reference | Related Articles | Metrics
Advances in Energy-Producing Anaerobic Biotechnologies for Municipal Wastewater Treatment
Wen-Wei Li, Han-Qing Yu
Engineering    2016, 2 (4): 438-446.   DOI: 10.1016/J.ENG.2016.04.017
Abstract   HTML   PDF (1326KB)

Municipal wastewater treatment has long been known as a high-cost and energy-intensive process that destroys most of the energy-containing molecules by spending energy and that leaves little energy and few nutrients available for reuse. Over the past few years, some wastewater treatment plants have tried to revamp themselves as “resource factories,” enabled by new technologies and the upgrading of old technologies. In particular, there is an renewed interest in anaerobic biotechnologies, which can convert organic matter into usable energy and preserve nutrients for potential reuse. However, considerable technological and economic limitations still exist. Here, we provide an overview of recent advances in several cutting-edge anaerobic biotechnologies for wastewater treatment, including enhanced side-stream anaerobic sludge digestion, anaerobic membrane bioreactors, and microbial electrochemical systems, and discuss future challenges and opportunities for their applications. This review is intended to provide useful information to guide the future design and optimization of municipal wastewater treatment processes.

Table and Figures | Reference | Related Articles | Metrics
Noncoding RNAs and Their Potential Therapeutic Applications in Tissue Engineering
Shiying Li, Tianmei Qian, Xinghui Wang, Jie Liu, Xiaosong Gu
Engineering    2017, 3 (1): 3-15.   DOI: 10.1016/J.ENG.2017.01.005
Abstract   HTML   PDF (1142KB)

Tissue engineering is a relatively new but rapidly developing field in the medical sciences. Noncoding RNAs (ncRNAs) are functional RNA molecules without a protein-coding function; they can regulate cellular behavior and change the biological milieu of the tissue. The application of ncRNAs in tissue engineering is starting to attract increasing attention as a means of resolving a large number of unmet healthcare needs, although ncRNA-based approaches have not yet entered clinical practice. In-depth research on the regulation and delivery of ncRNAs may improve their application in tissue engineering. The aim of this review is: to outline essential ncRNAs that are related to tissue engineering for the repair and regeneration of nerve, skin, liver, vascular system, and muscle tissue; to discuss their regulation and delivery; and to anticipate their potential therapeutic applications.

Table and Figures | Reference | Related Articles | Metrics
Infrastructure for China’s Ecologically Balanced Civilization
Chris Kennedy, Ma Zhong, Jan Corfee-Morlot
Engineering    2016, 2 (4): 414-425.   DOI: 10.1016/J.ENG.2016.04.014
Abstract   HTML   PDF (792KB)

China’s green investment needs up to 2020 are ¥1.7 trillion—2.9 trillion CNY ($274 billion—468 billion USD) per year. Estimates of financing requirements are provided for multiple sectors, including sustainable energy, infrastructure (including for environmental protection), environmental remediation, industrial pollution control, energy and water efficiency, and green products. The context to China’s green financing is discussed, covering urbanization, climate change, interactions between infrastructure sectors, and the transformation of industry. Much of the infrastructure financing will occur in cities, with a focus on equity, environmental protection, and quality of life under the National New-Type Urbanization Plan (20142020). China has implemented many successful policies in the building sector, but there is still considerable scope for improvement in the energy efficiency of Chinese buildings. China is currently pursuing low-carbon growth strategies that are consistent with its overall environmental and quality-of-life objectives. Beyond 2020, China’s future as an ecologically balanced civilization will rest on the implementation of a central infrastructure policy: China 2050 High Renewable Energy Penetration Scenario and Roadmap Study. As exemplified by the Circular Economy Development Strategy and Near-Term Action Plan, an essential part of China’s green industrial transformation involves engineering systems that conserve materials, thereby reducing or even eliminating wastes. To better understand changes to China’s economy under its green transformation and to unlock large potential sources of finance, it is necessary to undertake a fuller examination of all of China’s infrastructure sectors, particularly freight rail infrastructure and ports. Large investments are required to clean up a legacy of environmental contamination of soil and groundwater and to reduce industrial pollution. Transformation of the power sector away from coal will avoid some industrial treatment costs. The contribution of engineers in planning, designing, and constructing China’s new green infrastructure will be furthered by understanding the broad policy context and the interactions between land use, infrastructure, and environmental performance.

Table and Figures | Reference | Related Articles | Metrics
Fundamental Theories and Key Technologies for Smart and Optimal Manufacturing in the Process Industry
Feng Qian, Weimin Zhong, Wenli Du
Engineering    2017, 3 (2): 154-160.   DOI: 10.1016/J.ENG.2017.02.011
Abstract   HTML   PDF (1352KB)

Given the significant requirements for transforming and promoting the process industry, we present the major limitations of current petrochemical enterprises, including limitations in decision-making, production operation, efficiency and security, information integration, and so forth. To promote a vision of the process industry with efficient, green, and smart production, modern information technology should be utilized throughout the entire optimization process for production, management, and marketing. To focus on smart equipment in manufacturing processes, as well as on the adaptive intelligent optimization of the manufacturing process, operating mode, and supply chain management, we put forward several key scientific problems in engineering in a demand-driven and application-oriented manner, namely: ① intelligent sensing and integration of all process information, including production and management information; ② collaborative decision-making in the supply chain, industry chain, and value chain, driven by knowledge; ③ cooperative control and optimization of plant-wide production processes via human-cyber-physical interaction; and ④life-cycle assessments for safety and environmental footprint monitoring, in addition to tracing analysis and risk control. In order to solve these limitations and core scientific problems, we further present fundamental theories and key technologies for smart and optimal manufacturing in the process industry. Although this paper discusses the process industry in China, the conclusions in this paper can be extended to the process industry around the world.

Table and Figures | Reference | Related Articles | Metrics
Thermal Treatment of Hydrocarbon-Impacted Soils: A Review of Technology Innovation for Sustainable Remediation
Julia E. Vidonish, Kyriacos Zygourakis, Caroline A. Masiello, Gabriel Sabadell, Pedro J. J. Alvarez
Engineering    2016, 2 (4): 426-437.   DOI: 10.1016/J.ENG.2016.04.005
Abstract   HTML   PDF (4082KB)

Thermal treatment technologies hold an important niche in the remediation of hydrocarbon-contaminated soils and sediments due to their ability to quickly and reliably meet cleanup standards. However, sustained high temperature can be energy intensive and can damage soil properties. Despite the broad applicability and prevalence of thermal remediation, little work has been done to improve the environmental compatibility and sustainability of these technologies. We review several common thermal treatment technologies for hydrocarbon-contaminated soils, assess their potential environmental impacts, and propose frameworks for sustainable and low-impact deployment based on a holistic consideration of energy and water requirements, ecosystem ecology, and soil science. There is no universally appropriate thermal treatment technology. Rather, the appropriate choice depends on the contamination scenario (including the type of hydrocarbons present) and on site-specific considerations such as soil properties, water availability, and the heat sensitivity of contaminated soils. Overall, the convergence of treatment process engineering with soil science, ecosystem ecology, and plant biology research is essential to fill critical knowledge gaps and improve both the removal efficiency and sustainability of thermal technologies.

Table and Figures | Reference | Related Articles | Metrics
Major Technologies for Safe Construction of High Earth-Rockfill Dams
Hongqi Ma, Fudong Chi
Engineering    2016, 2 (4): 498-509.   DOI: 10.1016/J.ENG.2016.04.001
Abstract   HTML   PDF (6069KB)

The earth-rockfill dam is one of the primary dam types in the selection of high dams to be constructed in Western China, since it is characterized by favorable adaptability of the dam foundation; full utilization of local earth, rock, and building-excavated materials; low construction cost; and low cement consumption. Many major technical issues regarding earth-rockfill dams with a height of over 250 m were studied and solved successfully in the construction of the 261.5 m Nuozhadu earth core rockfill dam. This paper describes research achievements and basic conclusions; systematically summarizes the accumulated experiences from the construction of the Nuozhadu Dam and other high earth-rockfill dams; and discusses major technical issues, such as deformation control, seepage control, dam slope stability, safety and control of flood discharging, safety and quality control of dam construction, safety assessments, early warning, and other key technical difficulties. This study also provides a reference and technological support for the future construction of 300 m high earth-rockfill dams.

Table and Figures | Reference | Related Articles | Metrics
Recent Progress in Cartilage Tissue Engineering—Our Experience and Future Directions
Yu Liu, Guangdong Zhou, Yilin Cao
Engineering    2017, 3 (1): 28-35.   DOI: 10.1016/J.ENG.2017.01.010
Abstract   HTML   PDF (2916KB)

Given the limited spontaneous repair that follows cartilage injury, demand is growing for tissue engineering approaches for cartilage regeneration. There are two major applications for tissue-engineered cartilage. One is in orthopedic surgery, in which the engineered cartilage is usually used to repair cartilage defects or loss in an articular joint or meniscus in order to restore the joint function. The other is for head and neck reconstruction, in which the engineered cartilage is usually applied to repair cartilage defects or loss in an auricle, trachea, nose, larynx, or eyelid. The challenges faced by the engineered cartilage for one application are quite different from those faced by the engineered cartilage for the other application. As a result, the emphases of the engineering strategies to generate cartilage are usually quite different for each application. The statuses of preclinical animal investigations and of the clinical translation of engineered cartilage are also at different levels for each application. The aim of this review is to provide an opinion piece on the challenges, current developments, and future directions for cartilage engineering for both applications.

Table and Figures | Reference | Related Articles | Metrics
High-Speed Rail: Opportunities and Threats
Michel Leboeuf
Engineering    2016, 2 (4): 402-408.   DOI: 10.1016/J.ENG.2016.04.006
Abstract   PDF (1977KB)
 
Table and Figures | Reference | Related Articles | Metrics
Performance Assessment and Outlook of China’s Emission-Trading Scheme
Dabo Guan, Yuli Shan, Zhu Liu, Kebin He
Engineering    2016, 2 (4): 398-401.   DOI: 10.1016/J.ENG.2016.04.016
Abstract   HTML   PDF (865KB)
 
Table and Figures | Reference | Related Articles | Metrics
Climate Agreement
Lance A. Davis
Engineering    2016, 2 (4): 387-388.   DOI: 10.1016/J.ENG.2016.04.009
Abstract   HTML   PDF (407KB)
 
Reference | Related Articles | Metrics
Engineering Solutions for Representative Models of the Gastrointestinal Human-Microbe Interface
Marc Mac Giolla Eain, Joanna Baginska, Kacy Greenhalgh, Joëlle V. Fritz, Frederic Zenhausern, Paul Wilmes
Engineering    2017, 3 (1): 60-65.   DOI: 10.1016/J.ENG.2017.01.011
Abstract   HTML   PDF (1780KB)

Host-microbe interactions at the gastrointestinal interface have emerged as a key component in the governance of human health and disease. Advances in micro-physiological systems are providing researchers with unprecedented access and insights into this complex relationship. These systems combine the benefits of microengineering, microfluidics, and cell culture in a bid to recreate the environmental conditions prevalent in the human gut. Here we present the human-microbial cross talk (HuMiX) platform, one such system that leverages this multidisciplinary approach to provide a representative in vitro model of the human gastrointestinal interface. HuMiX presents a novel and robust means to study the molecular interactions at the host-microbe interface. We summarize our proof-of-concept results obtained using the platform and highlight its potential to greatly enhance our understanding of host-microbe interactions with a potential to greatly impact the pharmaceutical, food, nutrition, and healthcare industries in the future. A number of key questions and challenges facing these technologies are also discussed.

Table and Figures | Reference | Related Articles | Metrics
Fiber-Reinforced Polymer Bridge Design in the Netherlands: Architectural Challenges toward Innovative, Sustainable, and Durable Bridges
Joris Smits
Engineering    2016, 2 (4): 518-527.   DOI: 10.1016/J.ENG.2016.04.004
Abstract   PDF (7053KB)

This paper reviews the use of fiber-reinforced polymers (FRPs) in architectural and structural bridge design in the Netherlands. The challenges and opportunities of this relatively new material, both for the architect and the engineer, are discussed. An inventory of recent structural solutions in FRP is included, followed by a discussion on architectural FRP applications derived from the architectural practice of the author and of other pioneers.

Table and Figures | Reference | Related Articles | Metrics
High-Speed EMU TCMS Design and LCC Technology Research
Hongwei Zhao, Zhiping Huang, Ying Mei
Engineering    2017, 3 (1): 122-129.   DOI: 10.1016/J.ENG.2017.01.004
Abstract   HTML   PDF (3997KB)

This paper introduces the high-speed electrical multiple unit (EMU) life cycle, including the design, manufacturing, testing, and maintenance stages. It also presents the train control and monitoring system (TCMS) software development platform, the TCMS testing and verification bench, the EMU driving simulation platform, and the EMU remote data transmittal and maintenance platform. All these platforms and benches combined together make up the EMU life cycle cost (LCC) system. Each platform facilitates EMU LCC management and is an important part of the system.

Table and Figures | Reference | Related Articles | Metrics
More than Target 6.3: A Systems Approach to Rethinking Sustainable Development Goals in a Resource-Scarce World
Qiong Zhang, Christine Prouty, Julie B. Zimmerman, James R. Mihelcic
Engineering    2016, 2 (4): 481-489.   DOI: 10.1016/J.ENG.2016.04.010
Abstract   HTML   PDF (833KB)

The 2030 Agenda for Sustainable Development outlines 17 individual Sustainable Development Goals (SDGs) that guide the needs of practice for many professional disciplines around the world, including engineering, research, policy, and development. The SDGs represent commitments to reduce poverty, hunger, ill health, gender inequality, environmental degradation, and lack of access to clean water and sanitation. If a typical reductionist approach is employed to address and optimize individual goals, it may lead to a failure in technological, policy, or managerial development interventions through unintended consequences in other goals. This study uses a systems approach to understand the fundamental dynamics between the SDGs in order to identify potential synergies and antagonisms. A conceptual system model was constructed to illustrate the causal relationships between SDGs, examine system structures using generic system archetypes, and identify leverage points to effectively influence intentional and minimize unintentional changes in the system. The structure of interactions among the SDGs reflects three archetypes of system behavior: Reinforcing Growth, Limits to Growth, and Growth and Underinvestment. The leverage points identified from the conceptual model are gender equality, sustainable management of water and sanitation, alternative resources, sustainable livelihood standards, and global partnerships. Such a conceptual system analysis of SDGs can enhance the likelihood that the development community will broaden its understanding of the potential synergistic benefits of their projects on resource management, environmental sustainability, and climate change. By linking the interactions and feedbacks of those projects with economic gains, women’s empowerment, and educational equality, stakeholders can recognize holistic improvements that can be made to the quality of life of many of the world’s poor.

Table and Figures | Reference | Related Articles | Metrics
The Human Microbiota in Health and Disease
Baohong Wang, Mingfei Yao, Longxian Lv, Zongxin Ling, Lanjuan Li
Engineering    2017, 3 (1): 71-82.   DOI: 10.1016/J.ENG.2017.01.008
Abstract   HTML   PDF (1171KB)

Trillions of microbes have evolved with and continue to live on and within human beings. A variety of environmental factors can affect intestinal microbial imbalance, which has a close relationship with human health and disease. Here, we focus on the interactions between the human microbiota and the host in order to provide an overview of the microbial role in basic biological processes and in the development and progression of major human diseases such as infectious diseases, liver diseases, gastrointestinal cancers, metabolic diseases, respiratory diseases, mental or psychological diseases, and autoimmune diseases. We also review important advances in techniques associated with microbial research, such as DNA sequencing, metabonomics, and proteomics combined with computation-based bioinformatics. Current research on the human microbiota has become much more sophisticated and more comprehensive. Therefore, we propose that research should focus on the host-microbe interaction and on cause-effect mechanisms, which could pave the way to an understanding of the role of gut microbiota in health and disease. and provide new therapeutic targets and treatment approaches in clinical practice.

Table and Figures | Reference | Related Articles | Metrics
Improved Oxygen Evolution Kinetics and Surface States Passivation of Ni-Bi Co-Catalyst for a Hematite Photoanode
Ke Dang,Tuo Wang,Chengcheng Li,Jijie Zhang,Shanshan Liu,Jinlong Gong
Engineering    2017, 3 (3): 285-289.   DOI: 10.1016/J.ENG.2017.03.005
Abstract   HTML   PDF (1314KB)

This paper describes the combinational surface kinetics enhancement and surface states passivation of nickel-borate (Ni-Bi) co-catalyst for a hematite (Fe2O3) photoanode. The Ni-Bi-modified Fe2O3 photoanode exhibits a cathodic onset potential shift of 230 mV and a 2.3-fold enhancement of the photocurrent at 1.23 V, versus the reversible hydrogen electrode (RHE). The borate (Bi) in the Ni-Bi film promotes the release of protons for the oxygen evolution reaction (OER).

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
How Does the Microbiota Affect Human Health?
Lanjuan Li
Engineering    2017, 3 (1): 1-.   DOI: 10.1016/J.ENG.2017.01.021
Abstract   HTML   PDF (563KB)
Table and Figures | Reference | Related Articles | Metrics
Smart and Optimal Manufacturing: The Key for the Transformation and Development of the Process Industry
Feng Qian
Engineering    2017, 3 (2): 151-.   DOI: 10.1016/J.ENG.2017.02.016
Abstract   HTML   PDF (470KB)
Table and Figures | Reference | Related Articles | Metrics
Water, Air Emissions, and Cost Impacts of Air-Cooled Microturbines for Combined Cooling, Heating, and Power Systems: A Case Study in the Atlanta Region
Jean-Ann James, Valerie M. Thomas, Arka Pandit, Duo Li, John C. Crittenden
Engineering    2016, 2 (4): 470-480.   DOI: 10.1016/J.ENG.2016.04.008
Abstract   HTML   PDF (1982KB)

The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the potential to improve the energy generation efficiency of a city or urban region by providing energy for heating, cooling, and electricity simultaneously. The purpose of this study is to estimate the water consumption for energy generation use, carbon dioxide (CO2) and NOx emissions, and economic impact of implementing CCHP systems for five generic building types within the Atlanta metropolitan region, under various operational scenarios following the building thermal (heating and cooling) demands. Operating the CCHP system to follow the hourly thermal demand reduces CO2 emissions for most building types both with and without net metering. The system can be economically beneficial for all building types depending on the price of natural gas, the implementation of net metering, and the cost structure assumed for the CCHP system. The greatest reduction in water consumption for energy production and NOx emissions occurs when there is net metering and when the system is operated to meet the maximum yearly thermal demand, although this scenario also results in an increase in greenhouse gas emissions and, in some cases, cost. CCHP systems are more economical for medium office, large office, and multifamily residential buildings.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
A Feasibility Study of Power Generation from Sewage Using a Hollowed Pico-Hydraulic Turbine
Tomomi Uchiyama, Satoshi Honda, Tomoko Okayama, Tomohiro Degawa
Engineering    2016, 2 (4): 510-517.   DOI: 10.1016/J.ENG.2016.04.007
Abstract   HTML   PDF (4809KB)

This study is concerned with the feasibility of power generation using a pico-hydraulic turbine from sewage flowing in pipes. First, the sewage flow rate at two connection points to the Toyogawa River-Basin Sewerage, Japan, was explored for over a year to elucidate the hydraulic energy potential of the sewage. Second, the performance of the pico-hydraulic turbine was investigated via laboratory experiments that supposed the turbine to be installed in the sewage pipe at the connection points. This study indicates that the connection points have hydraulic potential that can be used for power generation throughout the year. It also demonstrates that the pico-hydraulic turbine can be usefully employed for power generation from sewage flowing in the pipe at the connection points.

Table and Figures | Reference | Related Articles | Metrics
A Train-Bridge Dynamic Interaction Analysis Method and Its Experimental Validation
Nan Zhang, Yuan Tian, He Xia
Engineering    2016, 2 (4): 528-536.   DOI: 10.1016/J.ENG.2016.04.012
Abstract   PDF (2289KB)

The train-bridge dynamic interaction problem began with the development of railway technology, and requires an evaluation method for bridge design in order to ensure the safety and stability of the bridge and the running train. This problem is studied using theoretical analysis, numerical simulation, and experimental study. In the train-bridge dynamic interaction system proposed in this paper, the train vehicle model is established by the rigid-body dynamics method, the bridge model is established by the finite element method, and the wheel/rail vertical and lateral interaction are simulated by the corresponding assumption and the Kalker linear creep theory, respectively. Track irregularity, structure deformation, wind load, collision load, structural damage, foundation scouring, and earthquake action are regarded as the excitation for the system. The train-bridge dynamic interaction system is solved by inter-history iteration. A case study of the dynamic response of a CRH380BL high-speed train running through a standard-design bridge in China is discussed. The dynamic responses of the vehicle and of the bridge subsystems are obtained for speeds ranging from 200 km·h-1 to 400 km·h-1, and the vibration mechanism are analyzed.

Table and Figures | Reference | Related Articles | Metrics
Current Issue
Volume 3 • Issue 5 •
· Editorial
· Topic Insights
· News & Highlights
· Research
Table of Contents
Most Popular
Most Read
Most Download
Most Cited

Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
Today's visits ;Accumulated visits . 京ICP备11030251号-2

 Engineering