Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Most Read
Published in last 1 year |  In last 2 years |  In last 3 years |  All
Please wait a minute...
For Selected: View Abstracts Toggle Thumbnails
Toward New-Generation Intelligent Manufacturing
Zhou Ji, Li Peigen, Zhou Yanhong, Wang Baicun, Zang Jiyuan, Meng Liu
Engineering    2018, 4 (1): 11-20.
Abstract   PDF (1814KB)

Intelligent manufacturing is a general concept that is under continuous development. It can be categorized into three basic paradigms: digital manufacturing, digital-networked manufacturing, and newgeneration intelligent manufacturing. New-generation intelligent manufacturing represents an indepth integration of new-generation artificial intelligence (AI) technology and advanced manufacturing technology. It runs through every link in the full life-cycle of design, production, product, and service. The concept also relates to the optimization and integration of corresponding systems; the continuous improvement of enterprises’ product quality, performance, and service levels; and reduction in resources consumption. New-generation intelligent manufacturing acts as the core driving force of the new industrial revolution and will continue to be the main pathway for the transformation and upgrading of the manufacturing industry in the decades to come. Human-cyber-physical systems (HCPSs) reveal the technological mechanisms of new-generation intelligent manufacturing and can effectively guide related theoretical research and engineering practice. Given the sequential development, cross interaction, and iterative upgrading characteristics of the three basic paradigms of intelligent manufacturing, a technology roadmap for ‘‘parallel promotion and integrated development” should be developed in order to drive forward the intelligent transformation of the manufacturing industry in China.

Reference | Related Articles | Metrics
A Practical Approach to Constructing a Knowledge Graph for Cybersecurity
Yan Jia, Yulu Qi, Huaijun Shang, Rong Jiang, Aiping Li
Engineering    2018, 4 (1): 53-60.
Abstract   PDF (925KB)

Cyberattack forms are complex and varied, and the detection and prediction of dynamic types of attack are always challenging tasks. Research on knowledge graphs is becoming increasingly mature in many fields. At present, it is very significant that certain scholars have combined the concept of the knowledge graph with cybersecurity in order to construct a cybersecurity knowledge base. This paper presents a cybersecurity knowledge base and deduction rules based on a quintuple model. Using machine learning, we extract entities and build ontology to obtain a cybersecurity knowledge base. New rules are then deduced by calculating formulas and using the path-ranking algorithm. The Stanford named entity recognizer (NER) is also used to train an extractor to extract useful information. Experimental results show that the Stanford NER provides many features and the useGazettes parameter may be used to train a recognizer in the cybersecurity domain in preparation for future work.

Reference | Related Articles | Metrics
The Longest Railway Tunnel in China
Haibo Zhang, Changyu Yang
Engineering    2018, 4 (2): 165-166.
Abstract   PDF (692KB)
Reference | Related Articles | Metrics
The Statics, Dynamics, and Aerodynamics of Long-Span Bridges
Yeong-Bin Yang, Yaojun Ge
Engineering    2017, 3 (6): 779-.
Abstract   PDF (300KB)
Reference | Related Articles | Metrics
Developments and Prospects of Long-Span High-Speed Railway Bridge Technologies in China
Shunquan Qin, Zongyu Gao
Engineering    2017, 3 (6): 787-794.
Abstract   PDF (3022KB)

With the rapid developments of the high-speed railway in China, a great number of long-span bridges have been constructed in order to cross rivers and gorges. At present, the longest main span of a constructed high-speed railway bridge is only 630 m. The main span of Hutong Yangtze River Bridge and of Wufengshan Yangtze River Bridge, which are under construction, will be much longer, at 1092 m each. In order to overcome the technical issues that originate from the extremely large dead loading and the relatively small structural stiffness of long-span high-speed railway bridges, many new technologies in bridge construction, design, materials, and so forth have been developed. This paper carefully reviews progress in the construction technologies of multi-function combined bridges in China, including combined highway and railway bridges and multi-track railway bridges. Innovations and practices regarding new types of bridge and composite bridge structures, such as bridges with three cable planes and three main trusses, inclined main trusses, slab-truss composite sections, and steel-concrete composite sections, are introduced. In addition, investigations into high-performance materials and integral fabrication and erection techniques for long-span railway bridges are summarized. At the end of the paper, prospects for the future development of long-span high-speed railway bridges are provided.

Reference | Related Articles | Metrics
A Scheme for a Sustainable Urban Water Environmental System During the Urbanization Process in China
Huibin Yu, Yonghui Song, Xin Chang, Hongjie Gao, Jianfeng Peng
Engineering    2018, 4 (2): 190-193.
Abstract   PDF (1063KB)

Urbanization is a potential factor in economic development, which is a main route to social development. As the scale of urbanization expands, the quality of the urban water environment may deteriorate, which can have a negative impact on sustainable urbanization. Therefore, a comprehensive understanding of the functions of the urban water environment is necessary, including its security, resources, ecology, landscape, culture, and economy. Furthermore, a deep analysis is required of the theoretical basis of the urban water environment, which is associated with geographical location, landscape ecology, and a low-carbon economy. In this paper, we expound the main principles for constructing a system for the urban water environment (including sustainable development, ecological priority, and regional differences), and suggest the content of an urban water environmental system. Such a system contains a natural water environment, an economic water environment, and a social water environment. The natural water environment is the base, an effective economic water environment is the focus, and a healthy social water environment is the essence of such a system. The construction of an urban water environment should rely on a comprehensive security system, complete scientific theory, and advanced technology.

Reference | Related Articles | Metrics
The New Frontiers of Cybersecurity
Binxing Fang, Kui Ren, Yan Jia
Engineering    2018, 4 (1): 1-2.
Abstract   PDF (425KB)
Reference | Related Articles | Metrics
Clean Energy Perspective
Lance A. Davis
Engineering    2017, 3 (6): 782-.
Abstract   PDF (180KB)
Reference | Related Articles | Metrics
A Mini-Review on Metal Recycling from Spent Lithium Ion Batteries
Xiaohong Zheng, Zewen Zhu, Xiao Lin, Yi Zhang, Yi He, Hongbin Cao, Zhi Sun
Engineering    2018, 4 (3): 361-370.
Abstract   PDF (504KB)

The rapid growth of lithium ion batteries (LIBs) for portable electronic devices and electric vehicles has resulted in an increased number of spent LIBs. Spent LIBs contain not only dangerous heavy metals but also toxic chemicals that pose a serious threat to ecosystems and human health. Therefore, a great deal of attention has been paid to the development of an efficient process to recycle spent LIBs for both economic aspects and environmental protection. In this paper, we review the state-of-the-art processes for metal recycling from spent LIBs, introduce the structure of a LIB, and summarize all available technologies that are used in different recovery processes. It is notable that metal extraction and pretreatment play important roles in the whole recovery process, based on one or more of the principles of pyrometallurgy, hydrometallurgy, biometallurgy, and so forth. By further comparing different recycling methods, existing challenges are identified and suggestions for improving the recycling effectiveness can be proposed.

Reference | Related Articles | Metrics
Universal Method for the Prediction of Abrasive Waterjet Performance in Mining
Eugene Averin
Engineering    2017, 3 (6): 888-891.
Abstract   PDF (281KB)

Abrasive waterjets (AWJs) can be used in extreme mining conditions for hard rock destruction, due to their ability to effectively cut difficult-to-machine materials with an absence of dust formation. They can also be used for explosion, intrinsic, and fire safety. Every destructible material can be considered as either ductile or brittle in terms of its fracture mechanics. Thus, there is a need for a method to predict the efficiency of cutting with AWJs that is highly accurate irrespective of material. This problem can be solved using the energy conservation approach, which states the proportionality between the material removal volume and the kinetic energy of AWJs. This paper describes a method based on this approach, along with recommendations on reaching the most effective level of destruction. Recommendations are provided regarding rational ranges of values for the relation of abrasive flow rate to water flow rate, standoff distance, and size of abrasive particles. I also provide a parameter to establish the threshold conditions for a material’s destruction initiation based on the temporary-structural approach of fracture mechanics.

Reference | Related Articles | Metrics
Development and Future Challenges of Bio-Syncretic Robots
Chuang Zhang, Wenxue Wang, Ning Xi, Yuechao Wang, Lianqing Liu
Engineering    2018, 4 (4): 452-463.
Abstract   PDF (938KB)

Bio-syncretic robots consisting of both living biological materials and non-living systems possess desirable attributes such as high energy efficiency, intrinsic safety, high sensitivity, and self-repairing capabilities. Compared with living biological materials or non-living traditional robots based on electromechanical systems, the combined system of a bio-syncretic robot holds many advantages. Therefore, developing bio-syncretic robots has been a topic of great interest, and significant progress has been achieved in this area over the past decade. This review systematically summarizes the development of bio-syncretic robots. First, potential trends in the development of bio-syncretic robots are discussed. Next, the current performance of bio-syncretic robots, including simple movement and controllability of velocity and direction, is reviewed. The living biological materials and non-living materials that are used in bio-syncretic robots, and the corresponding fabrication methods, are then discussed. In addition, recently developed control methods for bio-syncretic robots, including physical and chemical control methods, are described. Finally, challenges in the development of bio-syncretic robots are discussed from multiple viewpoints, including sensing and intelligence, living and non-living materials, control approaches, and information technology.

Reference | Related Articles | Metrics
Impact of Low-Impact Development Technologies from an Ecological Perspective in Different Residential Zones of the City of Atlanta, Georgia
Zackery B. Morris, Stephen M. Malone, Abigail R. Cohen, Marc J. Weissburg, Bert Bras
Engineering    2018, 4 (2): 194-199.
Abstract   PDF (660KB)

Low-impact development (LID) technologies have a great potential to reduce water usage and stormwater runoff and are therefore seen as sustainable improvements that can be made to traditional water infrastructure. These technologies include bioretention areas, rainwater capturing, and xeriscaping, all of which can be used in residential zones. Within the City of Atlanta, residential water usage accounts for 53% of the total water consumption; therefore, residential zones offer significant impact potential for the implementation of LID. This study analyzes the use of LID strategies within the different residential zones of the City of Atlanta from an ecological perspective by drawing analogies to natural ecosystems. The analysis shows that these technologies, especially with the addition of a graywater system, work to improve the conventional residential water network based upon these ecological metrics. The higher metric values suggest greater parity with healthy, natural ecosystems.

Reference | Related Articles | Metrics
Recent Advances in Passive Digital Image Security Forensics: A Brief Review
Xiang Lin, Jian-Hua Li, Shi-Lin Wang, Alan-Wee-Chung Liew, Feng Cheng, Xiao-Sa Huang
Engineering    2018, 4 (1): 29-39.
Abstract   PDF (1424KB)

With the development of sophisticated image editing and manipulation tools, the originality and authenticity of a digital image is usually hard to determine visually. In order to detect digital image forgeries, various kinds of digital image forensics techniques have been proposed in the last decade. Compared with active forensics approaches that require embedding additional information, passive forensics approaches are more popular due to their wider application scenario, and have attracted increasing academic and industrial research interests. Generally speaking, passive digital image forensics detects image forgeries based on the fact that there are certain intrinsic patterns in the original image left during image acquisition or storage, or specific patterns in image forgeries left during the image storage or editing. By analyzing the above patterns, the originality of an image can be authenticated. In this paper, a brief review on passive digital image forensic methods is presented in order to provide a comprehensive introduction on recent advances in this rapidly developing research area. These forensics approaches are divided into three categories based on the various kinds of traces they can be used to track—that is, traces left in image acquisition, traces left in image storage, and traces left in image editing. For each category, the forensics scenario, the underlying rationale, and state-of-the-art methodologies are elaborated. Moreover, the major limitations of the current image forensics approaches are discussed in order to point out some possible research directions or focuses in these areas.

Reference | Related Articles | Metrics
Social Influence Analysis: Models, Methods, and Evaluation
Kan Li, Lin Zhang, Heyan Huang
Engineering    2018, 4 (1): 40-46.
Abstract   PDF (415KB)

Social influence analysis (SIA) is a vast research field that has attracted research interest in many areas. In this paper, we present a survey of representative and state-of-the-art work in models, methods, and evaluation aspects related to SIA. We divide SIA models into two types: microscopic and macroscopic models. Microscopic models consider human interactions and the structure of the influence process, whereas macroscopic models consider the same transmission probability and identical influential power for all users. We analyze social influence methods including influence maximization, influence minimization, flow of influence, and individual influence. In social influence evaluation, influence evaluation metrics are introduced and social influence evaluation models are then analyzed. The objectives of this paper are to provide a comprehensive analysis, aid in understanding social behaviors, provide a theoretical basis for influencing public opinion, and unveil future research directions and potential applications.

Reference | Related Articles | Metrics
Typical Underwater Tunnels in the Mainland of China and Related Tunneling Technologies
Kairong Hong
Engineering    2017, 3 (6): 871-879.
Abstract   PDF (4415KB)

In the past decades, many underwater tunnels have been constructed in the mainland of China, and great progress has been made in related tunneling technologies. This paper presents the history and state of the art of underwater tunnels in the mainland of China in terms of shield-bored tunnels, drill-and-blast tunnels, and immersed tunnels. Typical underwater tunnels of these types in the mainland of China are described, along with innovative technologies regarding comprehensive geological prediction, grouting-based consolidation, the design and construction of large cross-sectional tunnels with shallow cover in weak strata, cutting tool replacement under limited drainage and reduced pressure conditions, the detection and treatment of boulders, the construction of underwater tunnels in areas with high seismic intensity, and the treatment of serious sedimentation in a foundation channel of immersed tunnels. Some suggestions are made regarding the three potential great strait-crossing tunnels—the Qiongzhou Strait-Crossing Tunnel, Bohai Strait-Crossing Tunnel, and Taiwan Strait-Crossing Tunnel—and issues related to these great strait-crossing tunnels that need further study are proposed.

Reference | Related Articles | Metrics
Key Technologies and Applications of the Design and Manufacturing of Non-Circular TBMs
Jianbin Li
Engineering    2017, 3 (6): 905-914.
Abstract   PDF (4190KB)

With the rapid development of the exploitation of underground space, more and more large- or superlarge-diameter tunnel-boring machines (TBMs) are being employed to construct underground space projects. At present, because conventional circular TBMs cannot completely meet the requirements of underground space exploitation regarding the cross-section and space-utilization ratio, non-circular TBMs, which are the tunneling equipment for an ideal cross-section, have become the new market growth point. This paper first presents the technical features and development status of non-circular TBMs. Next, in reference to typical projects and technological innovation, this paper investigates key techniques including shield design optimization, multi-cutterhead excavation, special-shaped segment erection, and soil conditioning in loess strata for a rectangular pipe-jacking machine and a horseshoe-shaped TBM, in order to provide a set of feasible solutions for the design, manufacture, and construction of non-circular TBMs. Relevant engineering practice shows that non-circular TBMs with customized design and manufacture have great advantages in terms of construction schedule, settlement control, and space utilization.

Reference | Related Articles | Metrics
A Geodesign Method of Human-Energy-Water Interactive Systems for Urban Infrastructure Design: 10KM2 Near-Zero District Project in Shanghai
Perry Pei-Ju Yang, Cheryl Shu-Fang Chi, Yihan Wu, Steven Jige Quan
Engineering    2018, 4 (2): 182-189.
Abstract   PDF (1507KB)

The grand challenges of climate change demand a new paradigm of urban design that takes the performance of urban systems into account, such as energy and water efficiency. Traditional urban design methods focus on the form-making process and lack performance dimensions. Geodesign is an emerging approach that emphasizes the links between systems thinking, digital technology, and geographic context. This paper presents the research results of the first phase of a larger research collaboration and proposes an extended geodesign method for a district-scale urban design to integrate systems of renewable energy production, energy consumption, and storm water management, as well as a measurement of human experiences in cities. The method incorporates geographic information system (GIS), parametric modeling techniques, and multidisciplinary design optimization (MDO) tools that enable collaborative design decision-making. The method is tested and refined in a test case with the objective of designing a near-zero-energy urban district. Our final method has three characteristics.①Integrated geodesign and parametric design: It uses a parametric design approach to generate focal-scale district prototypes by means of a custom procedural algorithm, and applies geodesign to evaluate the performances of design proposals. ② A focus on design flow: It elaborates how to define problems, what information is selected, and what criteria are used in making design decisions.③Multi-objective optimization: The test case produces indicators from performance modeling and derives principles through a multi-objective computational experiment to inform how the design can be improved. This paper concludes with issues and next steps in modeling urban design and infrastructure systems based on MDO tools.

Reference | Related Articles | Metrics
Supersonic Transport Redux?
Lance A. Davis
Engineering    2017, 3 (6): 785-786.
Abstract   PDF (396KB)
Reference | Related Articles | Metrics
Techno-Economic Challenges of Fuel Cell Commercialization
Junye Wang, Hualin Wang, Yi Fan
Engineering    2018, 4 (3): 352-360.
Abstract   PDF (1657KB)

As resource scarcity, extreme climate change, and pollution levels increase, economic growth must rely on more environmentally friendly and efficient production processes. Fuel cells are an ideal alternative to internal combustion (IC) engines and boilers on the path to greener industries because of their high efficiency and environmentally friendly operation. However, as a new energy technology, significant market penetration of fuel cells has not yet been achieved. In this paper, we perform a techno-economic and environmental analysis of fuel cell systems using life cycle and value chain activities. First, we investigate the procedure of fuel cell development and identify what activities should be undertaken according to fuel cell life cycle activities, value chain activities, and end-user acceptance criteria. Next, we present a unified learning of the institutional barriers in fuel cell commercialization. The primary end-user acceptance criteria are function, cost, and reliability; a fuel cell should outperform these criteria compared with its competitors, such as IC engines and batteries, to achieve a competitive advantage. The repair and maintenance costs of fuel cells (due to low reliability) can lead to a substantial cost increase and decrease in availability, which are the major factors for end-user acceptance. The fuel cell industry must face the challenge of how to overcome this reliability barrier. This paper provides a deeper insight into our work over the years on the main barriers to fuel cell commercialization, and discusses the potential pivotal role of fuel cells in a future low-carbon green economy. It also identifies the needs and points out some directions for this future low-carbon economy. Green energy, supplied with fuel cells, is truly the business mode of the future. Striving for a more sustainable development of economic growth by adopting green public investments and implementing policy initiatives encourages environmentally responsible industrial investments.

Reference | Related Articles | Metrics
The Smart Road: Practice and Concept
Lijun Sun, Hongduo Zhao, Huizhao Tu, Yu Tian
Engineering    2018, 4 (4): 436-437.
Abstract   PDF (238KB)
Reference | Related Articles | Metrics
A Non-Contact Original-State Online Real-Time Monitoring Method for Complex Liquids in Industrial Processes
Ning Duan, Linhua Jiang, Fuyuan Xu, Ge Zhang
Engineering    2018, 4 (3): 392-397.
Abstract   PDF (1761KB)

Failures are very common during the online real-time monitoring of large quantities of complex liquids in industrial processes, and can result in excessive resource consumption and pollution. In this study, we introduce a monitoring method capable of non-contact original-state online real-time monitoring for strongly coated, high-salinity, and multi-component liquids. The principle of the method is to establish the relationship among the concentration of the target substance in the liquid (C), the color space coordinates of the target substance at different concentrations (L*, a*, b*), and the maximum absorption wavelength (λmax); subsequently, the optimum wavelength λT of the liquid is determined by a high-precision scanning-type monitoring system that is used to detect the instantaneous concentration of the target substance in the flowing liquid. Unlike traditional monitoring methods and existing online monitoring methods, the proposed method does not require any pretreatment of the samples (i.e., filtration, dilution, oxidation/reduction, addition of chromogenic agent, constant volume, etc.), and it is capable of originalstate online real-time monitoring. This method is employed at a large electrolytic manganese plant to monitor the Fe3+ concentration in the colloidal process of the plant’s aging liquid (where the concentrations of Fe3+, Mn2+, and (NH4)2SO4are 0.5–18 mg·L1, 35–39 g·L1, and 90–110 g·L1, respectively). The relative error of this monitoring method compared with an off-line laboratory monitoring is less than 2%.

Reference | Related Articles | Metrics
Current Issue
Volume 4 • Issue 4 •
· News & Highlights
· Views & Comments
· Editorial
· Topic Insights
· Research
Table of Contents
Most Popular
Most Read
Most Download
Most Cited

Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.