Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Most Download
Published in last 1 year | In last 2 years| In last 3 years| All| Most Downloaded in Recent Month | Most Downloaded in Recent Year|

In last 3 years
Please wait a minute...
For Selected: View Abstracts Toggle Thumbnails
Recent Developments in Functional Crystals in China
Jiyang Wang, Haohai Yu, Yicheng Wu, Robert Boughton
Engineering    2015, 1 (2): 192-210.
Abstract   HTML   PDF (18413KB)

Functional crystals are the basic materials for the development of modern science and technology and are playing key roles in the modern information era. In this paper, we review functional crystals in China, including research history, significant achievements, and important applications by highlighting the most recent progress in research. Challenges for the development of functional materials are discussed and possible directions for development are proposed by focusing on potential strengths of these materials.

Table and Figures | Reference | Related Articles | Metrics
Marine Renewable Energy Seascape
Alistair G. L. Borthwick
Engineering    2016, 2 (1): 69-78.
Abstract   HTML   PDF (3705KB)

Energy production based on fossil fuel reserves is largely responsible for carbon emissions, and hence global warming. The planet needs concerted action to reduce fossil fuel usage and to implement carbon mitigation measures. Ocean energy has huge potential, but there are major interdisciplinary problems to be overcome regarding technology, cost reduction, investment, environmental impact, governance, and so forth. This article briefly reviews ocean energy production from offshore wind, tidal stream, ocean current, tidal range, wave, thermal, salinity gradients, and biomass sources. Future areas of research and development are outlined that could make exploitation of the marine renewable energy (MRE) seascape a viable proposition; these areas include energy storage, advanced materials, robotics, and informatics. The article concludes with a sustainability perspective on the MRE seascape encompassing ethics, legislation, the regulatory environment, governance and consenting, economic, social, and environmental constraints. A new generation of engineers is needed with the ingenuity and spirit of adventure to meet the global challenge posed by MRE.

Table and Figures | Reference | Related Articles | Metrics
The Status of the US High-Temperature Gas Reactors
Andrew C. Kadak
Engineering    2016, 2 (1): 119-123.
Abstract   HTML   PDF (895KB)

In 2005, the US passed the Energy Policy Act of 2005 mandating the construction and operation of a high-temperature gas reactor (HTGR) by 2021. This law was passed after a multiyear study by national experts on what future nuclear technologies should be developed. As a result of the Act, the US Congress chose to develop the so-called Next-Generation Nuclear Plant, which was to be an HTGR designed to produce process heat for hydrogen production. Despite high hopes and expectations, the current status is that high temperature reactors have been relegated to completing research programs on advanced fuels, graphite and materials with no plans to build a demonstration plant as required by the US Congress in 2005. There are many reasons behind this diminution of HTGR development, including but not limited to insufficient government funding requirements for research, unrealistically high temperature requirements for the reactor, the delay in the need for a “hydrogen” economy, competition from light water small modular light water reactors, little utility interest in new technologies, very low natural gas prices in the US, and a challenging licensing process in the US for non-water reactors.

Table and Figures | Reference | Related Articles | Metrics
Heading toward Artificial Intelligence 2.0
Yunhe Pan
Engineering    2016, 2 (4): 409-413.
Abstract   HTML   PDF (452KB)

With the popularization of the Internet, permeation of sensor networks, emergence of big data, increase in size of the information community, and interlinking and fusion of data and information throughout human society, physical space, and cyberspace, the information environment related to the current development of artificial intelligence (AI) has profoundly changed. AI faces important adjustments, and scientific foundations are confronted with new breakthroughs, as AI enters a new stage: AI 2.0. This paper briefly reviews the 60-year developmental history of AI, analyzes the external environment promoting the formation of AI 2.0 along with changes in goals, and describes both the beginning of the technology and the core idea behind AI 2.0 development. Furthermore, based on combined social demands and the information environment that exists in relation to Chinese development, suggestions on the development of AI 2.0 are given.

Reference | Related Articles | Metrics
Design and 3D Printing of Scaffolds and Tissues
Jia An, Joanne Ee Mei Teoh, Ratima Suntornnond, Chee Kai Chua
Engineering    2015, 1 (2): 261-268.
Abstract   HTML   PDF (2059KB)

A growing number of?three-dimensional (3D)-print-ing processes have been applied to tissue engineering. This paper presents a state-of-the-art study of 3D-printing technologies?for tissue-engineering applications, with particular focus on the development of a computer-aided scaffold design system; the direct 3D printing of functionally graded scaffolds; the modeling of selective laser sintering (SLS) and fused deposition modeling (FDM) processes; the indirect additive manufacturing of scaffolds, with both micro and macro features; the development of a bioreactor; and 3D/4D bioprinting. Technological limitations will be discussed so as to highlight the possibility of future improvements for new 3D-printing methodologies for tissue engineering.

Table and Figures | Reference | Related Articles | Metrics
Toward New-Generation Intelligent Manufacturing
Zhou Ji, Li Peigen, Zhou Yanhong, Wang Baicun, Zang Jiyuan, Meng Liu
Engineering    2018, 4 (1): 11-20.
Abstract   PDF (1814KB)

Intelligent manufacturing is a general concept that is under continuous development. It can be categorized into three basic paradigms: digital manufacturing, digital-networked manufacturing, and newgeneration intelligent manufacturing. New-generation intelligent manufacturing represents an indepth integration of new-generation artificial intelligence (AI) technology and advanced manufacturing technology. It runs through every link in the full life-cycle of design, production, product, and service. The concept also relates to the optimization and integration of corresponding systems; the continuous improvement of enterprises’ product quality, performance, and service levels; and reduction in resources consumption. New-generation intelligent manufacturing acts as the core driving force of the new industrial revolution and will continue to be the main pathway for the transformation and upgrading of the manufacturing industry in the decades to come. Human-cyber-physical systems (HCPSs) reveal the technological mechanisms of new-generation intelligent manufacturing and can effectively guide related theoretical research and engineering practice. Given the sequential development, cross interaction, and iterative upgrading characteristics of the three basic paradigms of intelligent manufacturing, a technology roadmap for ‘‘parallel promotion and integrated development” should be developed in order to drive forward the intelligent transformation of the manufacturing industry in China.

Reference | Related Articles | Metrics
Optical Molecular Imaging Frontiers in Oncology: The Pursuit of Accuracy and Sensitivity
Kun Wang,Chongwei Chi,Zhenhua Hu,Muhan Liu,Hui Hui,Wenting Shang,Dong Peng,Shuang Zhang,Jinzuo Ye,Haixiao Liu,Jie Tian
Engineering    2015, 1 (3): 309-323.
Abstract   HTML   PDF (15201KB)

Cutting-edge technologies in optical molecular imaging have ushered in new frontiers in cancer research, clinical translation, and medical practice, as evidenced by recent advances in optical multimodality imaging, Cerenkov luminescence imaging (CLI), and optical image-guided surgeries. New abilities allow in vivo cancer imaging with sensitivity and accuracy that are unprecedented in conventional imaging approaches. The visualization of cellular and molecular behaviors and events within tumors in living subjects is improving our deeper understanding of tumors at a systems level. These advances are being rapidly used to acquire tumor-to-tumor molecular heterogeneity, both dynamically and quantitatively, as well as to achieve more effective therapeutic interventions with the assistance of real-time imaging. In the era of molecular imaging, optical technologies hold great promise to facilitate the development of highly sensitive cancer diagnoses as well as personalized patient treatment—one of the ultimate goals of precision medicine.

Table and Figures | Reference | Related Articles | Metrics
Research and Development of Heat-Resistant Materials for Advanced USC Power Plants with Steam Temperatures of 700 °C and Above
Fujio Abe
Engineering    2015, 1 (2): 211-224.
Abstract   HTML   PDF (1966KB)

Materials-development projects for advanced ultra-supercritical (A-USC) power plants with steam temperatures of 700 °C and above have been performed in order to achieve high efficiency and low CO2 emissions in Europe, the US, Japan, and recently in China and India as well. These projects involve the replacement of martensitic 9%−12% Cr steels with nickel (Ni)-base alloys for the highest temperature boiler and turbine components in order to provide sufficient creep strength at 700°C and above. To minimize the require­ment for expensive Ni-base alloys, martensitic 9%−12% Cr steels can be applied to the next highest temperature components of an A-USC power plant, up to a maximum of 650°C. This paper comprehensively describes the research and development of Ni-base alloys and martensitic 9%−12% Cr steels for thick section boiler and turbine components of A-USC power plants, mainly focusing on the long-term creep-rupture strength of base metal and welded joints, strength loss in welded joints, creep-fatigue properties, and microstructure evolution during exposure at elevated temperatures.

Table and Figures | Reference | Related Articles | Metrics
Systems Neuroengineering: Understanding and Interacting with the Brain
Bradley J. Edelman, Nessa Johnson, Abbas Sohrabpour, Shanbao Tong, Nitish Thakor, Bin He
Engineering    2015, 1 (3): 292-308.
Abstract   HTML   PDF (9823KB)

In this paper, we review the current state-of-the-art techniques used for understanding the inner workings of the brain at a systems level. The neural activity that governs our everyday lives involves an intricate coordination of many processes that can be attributed to a variety of brain regions. On the surface, many of these functions can appear to be controlled by specific anatomical structures; however, in reality, numerous dynamic networks within the brain contribute to its function through an interconnected web of neuronal and synaptic pathways. The brain, in its healthy or pathological state, can therefore be best understood by taking a systems-level approach. While numerous neuroengineering technologies exist, we focus here on three major thrusts in the field of systems neuroengineering: neuroimaging, neural interfacing, and neuromodulation. Neuroimaging enables us to delineate the structural and functional organization of the brain, which is key in understanding how the neural system functions in both normal and disease states. Based on such knowledge, devices can be used either to communicate with the neural system, as in neural interface systems, or to modulate brain activity, as in neuromodulation systems. The consideration of these three fields is key to the development and application of neuro-devices. Feedback-based neuro-devices require the ability to sense neural activity (via a neuroimaging modality) through a neural interface (invasive or noninvasive) and ultimately to select a set of stimulation parameters in order to alter neural function via a neuromodulation modality. Systems neuroengineering refers to the use of engineering tools and technologies to image, decode, and modulate the brain in order to comprehend its functions and to repair its dysfunction. Interactions between these fields will help to shape the future of systems neuroengineering—to develop neurotechniques for enhancing the understanding of whole-brain function and dysfunction, and the management of neurological and mental disorders.

Table and Figures | Reference | Related Articles | Metrics
CPS Modeling of CNC Machine Tool Work Processes Using an Instruction-Domain Based Approach
Jihong Chen, Jianzhong Yang, Huicheng Zhou, Hua Xiang, Zhihong Zhu, Yesong Li, Chen-Han Lee, Guangda Xu
Engineering    2015, 1 (2): 247-260.
Abstract   HTML   PDF (5345KB)

Building cyber-physical system (CPS) models of machine tools is a key technology for intelligent manufacturing. The massive electronic data from a computer numerical control (CNC) system during the work processes of a CNC machine tool is the main source of the big data on which a CPS model is established. In this work-process model, a method based on instruction domain is applied to analyze the electronic big data, and a quantitative description of the numerical control (NC) processes is built according to the G code of the processes. Utilizing the instruction domain, a work-process CPS model is established on the basis of the accurate, real-time mapping of the manufacturing tasks, resources, and status of the CNC machine tool. Using such models, case studies are conducted on intelligent-machining applications, such as the optimization of NC processing parameters and the health assurance of CNC machine tools.

Table and Figures | Reference | Related Articles | Metrics
Metamaterials: Reshape and Rethink
Ruopeng Liu, Chunlin Ji, Zhiya Zhao, Tian Zhou
Engineering    2015, 1 (2): 179-184.
Abstract   HTML   PDF (1318KB)

Metamaterials are composite materials whose material properties (acoustic, electrical, magnetic, or optical, etc.) are determined by their constitutive structural materials, especially the unit cells. The development of metamaterials continues to redefine the boundaries of materials science. In the field of electromagnetic research and beyond, these materials offer excellent design flexibility with their customized properties and their tunability under external stimuli. In this paper, we first provide a literature review of metamaterials with a focus on the technology and its evolution. We then discuss steps in the industrialization process and share our own experience.

Table and Figures | Reference | Related Articles | Metrics
Big Data for Precision Medicine
Daniel Richard Leff, Guang-Zhong Yang
Engineering    2015, 1 (3): 277-279.
Abstract   HTML   PDF (162KB)

This article focuses on the potential impact of big data analysis to improve health, prevent and detect disease at an earlier stage, and personalize interventions. The role that big data analytics may have in interrogating the patient electronic health record toward improved clinical decision support is discussed. We examine developments in pharmacogenetics that have increased our appreciation of the reasons why patients respond differently to chemotherapy. We also assess the expansion of online health communications and the way in which this data may be capitalized on in order to detect public health threats and control or contain epidemics. Finally, we describe how a new generation of wearable and implantable body sensors may improve wellbeing, streamline management of chronic diseases, and improve the quality of surgical implants.

Reference | Related Articles | Metrics
A Technical Review of Hydro-Project Development in China
Jinsheng Jia
Engineering    2016, 2 (3): 302-312.
Abstract   HTML   PDF (11589KB)

This paper summarizes the development of hydro-projects in China, blended with an international perspective. It expounds major technical progress toward ensuring the safe construction of high dams and river harnessing, and covers the theorization of uneven non-equilibrium sediment transport, inter-basin water diversion, giant hydro-generator units, pumped storage power stations, underground caverns, ecological protection, and so on.

Table and Figures | Reference | Related Articles | Metrics
Bioprinting-Based High-Throughput Fabrication of Three-Dimensional MCF-7 Human Breast Cancer Cellular Spheroids
Kai Ling, Guoyou Huang, Juncong Liu, Xiaohui Zhang, Yufei Ma, Tianjian Lu, Feng Xu
Engineering    2015, 1 (2): 269-274.
Abstract   HTML   PDF (3266KB)

Cellular spheroids serving as three-dimensional (3D) in vitro tissue models have attracted increasing interest for pathological study and drug-screening applications. Various methods, including microwells in particular, have been developed for engineering cellular spheroids. However, these methods usually suffer from either destructive molding operations or cell loss and non-uniform cell distribution among the wells due to two-step molding and cell seeding. We have developed a facile method that utilizes cell-embedded hydrogel arrays as templates for concave well fabrication and in situ MCF-7 cellular spheroid formation on a chip. A custom-built bioprinting system was applied for the fabrication of sacrificial gelatin arrays and sequentially concave wells in a high-throughput, flexible, and controlled manner. The ability to achieve in situ cell seeding for cellular spheroid construction was demonstrated with the advantage of uniform cell seeding and the potential for programmed fabrication of tissue models on chips. The developed method holds great potential for applications in tissue engineering, regenerative medicine, and drug screening.

Table and Figures | Reference | Related Articles | Metrics
Bulk Glassy Alloys: Historical Development and Current Research
Akihisa Inoue
Engineering    2015, 1 (2): 185-191.
Abstract   HTML   PDF (317KB)

This paper reviews the development of current research in bulk glassy alloys by focusing on the trigger point for the synthesis of the first bulk glassy alloys by the conventional mold casting method. This review covers the background, discovery, characteristics, and applications of bulk glassy alloys, as well as recent topics regarding them. Applications of bulk glassy alloys have been expanding, particularly for Fe-based bulk glassy alloys, due to their unique properties, high glass-forming ability, and low cost. In the near future, the engineering importance of bulk glassy alloys is expected to increase steadily, and continuous interest in these novel metallic materials for basic science research is anticipated.

Reference | Related Articles | Metrics
High-Throughput Multi-Plume Pulsed-Laser Deposition for Materials Exploration and Optimization
Samuel S. Mao, Xiaojun Zhang
Engineering    2015, 1 (3): 367-371.
Abstract   HTML   PDF (4674KB)

A high-throughput multi-plume pulsed-laser deposition (MPPLD) system has been demonstrated and compared to previous techniques. Whereas most combinatorial pulsed-laser deposition (PLD) systems have focused on achieving thickness uniformity using sequential multilayer deposition and masking followed by post-deposition annealing, MPPLD directly deposits a compositionally varied library of compounds using the directionality of PLD plumes and the resulting spatial variations of deposition rate. This system is more suitable for high-throughput compound thin-film fabrication.

Table and Figures | Reference | Related Articles | Metrics
Smart Grids with Intelligent Periphery: An Architecture for the Energy Internet
Felix F. Wu,Pravin P. Varaiya,Ron S. Y. Hui
Engineering    2015, 1 (4): 436-446.
Abstract   HTML   PDF (1067KB)

A future smart grid must fulfill the vision of the Energy Internet in which millions of people produce their own energy from renewables in their homes, offices, and factories and share it with each other. Electric vehicles and local energy storage will be widely deployed. Internet technology will be utilized to transform the power grid into an energy-sharing inter-grid. To prepare for the future, a smart grid with intelligent periphery, or smart GRIP, is proposed. The building blocks of GRIP architecture are called clusters and include an energy-management system (EMS)-controlled transmission grid in the core and distribution grids, micro-grids, and smart buildings and homes on the periphery; all of which are hierarchically structured. The layered architecture of GRIP allows a seamless transition from the present to the future and plug-and-play interoperability. The basic functions of a cluster consist of ① dispatch, ② smoothing, and ③ mitigation. A risk-limiting dispatch methodology is presented; a new device, called the electric spring, is developed for smoothing out fluctuations in periphery clusters; and means to mitigate failures are discussed.

Table and Figures | Reference | Related Articles | Metrics
Recent Advances in 19Fluorine Magnetic Resonance Imaging with Perfluorocarbon Emulsions
Anne H. Schmieder,Shelton D. Caruthers,Jochen Keupp,Samuel A. Wickline,Gregory M. Lanza
Engineering    2015, 1 (4): 475-489.
Abstract   HTML   PDF (2072KB)

The research roots of 19fluorine (19F) magnetic resonance imaging (MRI) date back over 35 years. Over that time span, 1H imaging flourished and was adopted worldwide with an endless array of applications and imaging approaches, making magnetic resonance an indispensable pillar of biomedical diagnostic imaging. For many years during this timeframe, 19F imaging research continued at a slow pace as the various attributes of the technique were explored. However, over the last decade and particularly the last several years, the pace and clinical relevance of 19F imaging has exploded. In part, this is due to advances in MRI instrumentation, 19F/1H coil designs, and ultrafast pulse sequence development for both preclinical and clinical scanners. These achievements, coupled with interest in the molecular imaging of anatomy and physiology, and combined with a cadre of innovative agents, have brought the concept of 19F into early clinical evaluation. In this review, we attempt to provide a slice of this rich history of research and development, with a particular focus on liquid perfluorocarbon compound-based agents.

Table and Figures | Reference | Related Articles | Metrics
Mechanism of the December 2015 Catastrophic Landslide at the Shenzhen Landfill and Controlling Geotechnical Risks of Urbanization
Yueping Yin,Bin Li,Wenpei Wang,Liangtong Zhan,Qiang Xue,Yang Gao,Nan Zhang,Hongqi Chen,Tiankui Liu,Aiguo Li
Engineering    2016, 2 (2): 230-249.
Abstract   HTML   PDF (10134KB)

This paper presents findings from an investigation of the large-scale construction solid waste (CSW) landslide that occurred at a landfill at Shenzhen, Guangdong, China, on December 20, 2015, and which killed 77 people and destroyed 33 houses. The landslide involved 2.73×106 m3 of CSW and affected an area about 1100?m in length and 630?m in maximum width, making it the largest landfill landslide in the world. The investigation of this disaster used a combination of unmanned aerial vehicle surveillance and multistage remote-sensing images to reveal the increasing volume of waste in the landfill and the shifting shape of the landfill slope for nearly two years before the landslide took place, beginning with the creation of the CSW landfill in March, 2014, that resulted in the uncertain conditions of the landfill’s boundaries and the unstable state of the hydrologic performance. As a result, applying conventional stability analysis methods used for natural landslides to this case would be difficult. In order to analyze this disaster, we took a multistage modeling technique to analyze the varied characteristics of the landfill slope’s structure at various stages of CSW dumping and used the non-steady?flow?theory to explain the groundwater seepage problem. The investigation showed that the landfill could be divided into two units based on the moisture in the land: ① a front uint, consisted of the landfill slope, which had low water content; and ② a rear unit, consisted of fresh waste, which had a high water content. This structure caused two effects—surface-water infiltration and consolidation seepage that triggered the landslide in the landfill. Surface-water infiltration induced a gradual increase in pore water pressure head, or piezometric head, in the front slope because the infiltrating position rose as the volume of waste placement increased. Consolidation seepage led to higher excess pore water pressures as the loading of waste increased. We also investigated the post-failure soil dynamics parameters of the landslide deposit using cone penetration, triaxial, and ring-shear tests in order to simulate the characteristics of a flowing slide with a long run-out due to the liquefaction effect. Finally, we conclude the paper with lessons from the tens of catastrophic landslides of municipal solid waste around the world and discuss how to better manage the geotechnical risks of urbanization.

Table and Figures | Reference | Related Articles | Metrics
Progress in Understanding Color Maintenance in Solid-State Lighting Systems
Maryam Yazdan Mehr, Willem Dirk van Driel, G. Q. (Kouchi) Zhang
Engineering    2015, 1 (2): 170-178.
Abstract   HTML   PDF (2444KB)

In this paper, progresses of color maintenance, also known as color shift, in solid-state lighting (SSL) systems are thoroughly reviewed. First, color shift is introduced and a few examples are given from different real-life industrial conditions. Different degradation mechanisms in different parts of the system are also explained. Different materials used as lenses/encapsulants in light-emitting diode (LED)-based products are introduced and their contributions to color shift are discussed. Efforts put into standardization, characterizing, and predicting lumen maintenance are also briefly reviewed in this paper.

Table and Figures | Reference | Related Articles | Metrics
Strategies and Principles of Distributed Machine Learning on Big Data
Eric P. Xing,Qirong Ho,Pengtao Xie,Dai Wei
Engineering    2016, 2 (2): 179-195.
Abstract   HTML   PDF (5197KB)

The rise of big data has led to new demands for machine learning (ML) systems to learn complex models, with millions to billions of parameters, that promise adequate capacity to digest massive datasets and offer powerful predictive analytics (such as high-dimensional latent features, intermediate representations, and decision functions) thereupon. In order to run ML algorithms at such scales, on a distributed cluster with tens to thousands of machines, it is often the case that significant engineering efforts are required—and one might fairly ask whether such engineering truly falls within the domain of ML research. Taking the view that “big” ML systems can benefit greatly from ML-rooted statistical and algorithmic insights—and that ML researchers should therefore not shy away from such systems design—we discuss a series of principles and strategies distilled from our recent efforts on industrial-scale ML solutions. These principles and strategies span a continuum from application, to engineering, and to theoretical research and development of big ML systems and architectures, with the goal of understanding how to make them efficient, generally applicable, and supported with convergence and scaling guarantees. They concern four key questions that traditionally receive little attention in ML research: How can an ML program be distributed over a cluster? How can ML computation be bridged with inter-machine communication? How can such communication be performed? What should be communicated between machines? By exposing underlying statistical and algorithmic characteristics unique to ML programs but not typically seen in traditional computer programs, and by dissecting successful cases to reveal how we have harnessed these principles to design and develop both high-performance distributed ML software as well as general-purpose ML frameworks, we present opportunities for ML researchers and practitioners to further shape and enlarge the area that lies between ML and systems.

Table and Figures | Reference | Related Articles | Metrics
Salinity Gradient Energy: Current State and New Trends
Olivier Schaetzle, Cees J. N. Buisman
Engineering    2015, 1 (2): 164-166.
Abstract   HTML   PDF (1127KB)

In this article we give an overview of the state of the art of salinity gradient technologies. We first introduce the concept of salinity gradient energy, before describing the current state of development of the most advanced of these technologies. We conclude with the new trends in the young field of salinity gradient technologies.

Table and Figures | Reference | Related Articles | Metrics
An Ultrasonic Backscatter Instrument for Cancellous Bone Evaluation in Neonates
Chengcheng Liu, Rong Zhang, Ying Li, Feng Xu, Dean Ta, Weiqi Wang
Engineering    2015, 1 (3): 336-343.
Abstract   HTML   PDF (5181KB)

Ultrasonic backscatter technique has shown promise as a noninvasive cancellous bone assessment tool. A novel ultrasonic backscatter bone diagnostic (UBBD) instrument and an in vivo application for neonatal bone evaluation are introduced in this study. The UBBD provides several advantages, including noninvasiveness, non-ionizing radiation, portability, and simplicity. In this study, the backscatter signal could be measured within 5 s using the UBBD. Ultrasonic backscatter measurements were performed on 467 neonates (268 males and 199 females) at the left calcaneus. The backscatter signal was measured at a central frequency of 3.5 MHz. The delay (T1) and duration (T2) of the backscatter signal of interest (SOI) were varied, and the apparent integrated backscatter (AIB), frequency slope of apparent backscatter (FSAB), zero frequency intercept of apparent backscatter (FIAB), and spectral centroid shift (SCS) were calculated. The results showed that the SOI selection had a direct influence on cancellous bone evaluation. The AIB and FIAB were positively correlated with the gestational age (|R| up to 0.45, P<0.001) when T1 was short (<8 µs), while negative correlations (|R| up to 0.56, P<0.001) were commonly observed for T1>10 µs. Moderate positive correlations (|R| up to 0.45, P<0.001) were observed for FSAB and SCS with gestational age when T1 was long (>10 µs). The T2 mainly introduced fluctuations in the observed correlation coefficients. The moderate correlations observed with UBBD demonstrate the feasibility of using the backscatter signal to evaluate neonatal bone status. This study also proposes an explicit standard for in vivo SOI selection and neonatal cancellous bone assessment.

Table and Figures | Reference | Related Articles | Metrics
Key Technologies in the Design and Construction of 300 m Ultra-High Arch Dams
Renkun Wang
Engineering    2016, 2 (3): 350-359.
Abstract   HTML   PDF (2717KB)

Starting with the Ertan arch dam (240 m high, 3300 MW) in 2000, China successfully built a total of seven ultra-high arch dams over 200 m tall by the end of 2014. Among these, the Jinping I (305 m), Xiaowan (294.5m), and Xiluodu (285.5 m) arch dams have reached the 300 m height level (i.e., near or over 300 m), making them the tallest arch dams in the world. The design and construction of these 300 m ultra-high arch dams posed significant challenges, due to high water pressures, high seismic design criteria, and complex geological conditions. The engineering team successfully tackled these challenges and made critical breakthroughs, especially in the area of safety control. In this paper, the author summarizes various key technological aspects involved in the design and construction of 300?m ultra-high arch dams, including the strength and stability of foundation rock, excavation of the dam base and surface treatment, dam shape optimization, safety design guidelines, seismic analysis and design, treatment of a complex foundation, concrete temperature control, and crack prevention. The experience gained from these projects should be valuable for future practitioners.

Table and Figures | Reference | Related Articles | Metrics
Genetically Engineered Crops
Lance A. Davis
Engineering    2016, 2 (3): 268-269.
Abstract   HTML   PDF (910KB)
Table and Figures | Reference | Related Articles | Metrics
The Shandong Shidao Bay 200 MWe High-Temperature Gas-Cooled Reactor Pebble-Bed Module (HTR-PM) Demonstration Power Plant: An Engineering and Technological Innovation
Zuoyi Zhang, Yujie Dong, Fu Li, Zhengming Zhang, Haitao Wang, Xiaojin Huang, Hong Li, Bing Liu, Xinxin Wu, Hong Wang, Xingzhong Diao, Haiquan Zhang, Jinhua Wang
Engineering    2016, 2 (1): 112-118.
Abstract   HTML   PDF (1901KB)

After the first concrete was poured on December 9, 2012 at the Shidao Bay site in Rongcheng, Shandong Province, China, the construction of the reactor building for the world’s first high-temperature gas-cooled reactor pebble-bed module (HTR-PM) demonstration power plant was completed in June, 2015. Installation of the main equipment then began, and the power plant is currently progressing well toward connecting to the grid at the end of 2017. The thermal power of a single HTR-PM reactor module is 250 MWth, the helium temperatures at the reactor core inlet/outlet are 250/750 °C, and a steam of 13.25 MPa/567 °C is produced at the steam generator outlet. Two HTR-PM reactor modules are connected to a steam turbine to form a 210 MWe nuclear power plant. Due to China’s industrial capability, we were able to overcome great difficulties, manufacture first-of-a-kind equipment, and realize series major technological innovations. We have achieved successful results in many aspects, including planning and implementing R&D, establishing an industrial partnership, manufacturing equipment, fuel production, licensing, site preparation, and balancing safety and economics; these obtained experiences may also be referenced by the global nuclear community.

Table and Figures | Reference | Related Articles | Metrics
Current Issue
Volume 4 • Issue 1 •
· News & Highlights
· Views & Comments
· Editorial
· Topic Insights
· Research
Table of Contents
Most Popular
Most Read
Most Download
Most Cited

Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.