Submit  |   Chinese  | 
 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Most Download
Published in last 1 year | In last 2 years| In last 3 years| All| Most Downloaded in Recent Month | Most Downloaded in Recent Year|

Most Downloaded in Recent Year
Please wait a minute...
For Selected: View Abstracts Toggle Thumbnails
Heading toward Artificial Intelligence 2.0
Yunhe Pan
Engineering    2016, 2 (4): 409-413.   DOI: 10.1016/J.ENG.2016.04.018
Abstract   HTML   PDF (452KB)

With the popularization of the Internet, permeation of sensor networks, emergence of big data, increase in size of the information community, and interlinking and fusion of data and information throughout human society, physical space, and cyberspace, the information environment related to the current development of artificial intelligence (AI) has profoundly changed. AI faces important adjustments, and scientific foundations are confronted with new breakthroughs, as AI enters a new stage: AI 2.0. This paper briefly reviews the 60-year developmental history of AI, analyzes the external environment promoting the formation of AI 2.0 along with changes in goals, and describes both the beginning of the technology and the core idea behind AI 2.0 development. Furthermore, based on combined social demands and the information environment that exists in relation to Chinese development, suggestions on the development of AI 2.0 are given.

Reference | Related Articles | Metrics
Marine Renewable Energy Seascape
Alistair G. L. Borthwick
Engineering    2016, 2 (1): 69-78.   DOI: 10.1016/J.ENG.2016.01.011
Abstract   HTML   PDF (3705KB)

Energy production based on fossil fuel reserves is largely responsible for carbon emissions, and hence global warming. The planet needs concerted action to reduce fossil fuel usage and to implement carbon mitigation measures. Ocean energy has huge potential, but there are major interdisciplinary problems to be overcome regarding technology, cost reduction, investment, environmental impact, governance, and so forth. This article briefly reviews ocean energy production from offshore wind, tidal stream, ocean current, tidal range, wave, thermal, salinity gradients, and biomass sources. Future areas of research and development are outlined that could make exploitation of the marine renewable energy (MRE) seascape a viable proposition; these areas include energy storage, advanced materials, robotics, and informatics. The article concludes with a sustainability perspective on the MRE seascape encompassing ethics, legislation, the regulatory environment, governance and consenting, economic, social, and environmental constraints. A new generation of engineers is needed with the ingenuity and spirit of adventure to meet the global challenge posed by MRE.

Table and Figures | Reference | Related Articles | Metrics
The Status of the US High-Temperature Gas Reactors
Andrew C. Kadak
Engineering    2016, 2 (1): 119-123.   DOI: 10.1016/J.ENG.2016.01.026
Abstract   HTML   PDF (895KB)

In 2005, the US passed the Energy Policy Act of 2005 mandating the construction and operation of a high-temperature gas reactor (HTGR) by 2021. This law was passed after a multiyear study by national experts on what future nuclear technologies should be developed. As a result of the Act, the US Congress chose to develop the so-called Next-Generation Nuclear Plant, which was to be an HTGR designed to produce process heat for hydrogen production. Despite high hopes and expectations, the current status is that high temperature reactors have been relegated to completing research programs on advanced fuels, graphite and materials with no plans to build a demonstration plant as required by the US Congress in 2005. There are many reasons behind this diminution of HTGR development, including but not limited to insufficient government funding requirements for research, unrealistically high temperature requirements for the reactor, the delay in the need for a “hydrogen” economy, competition from light water small modular light water reactors, little utility interest in new technologies, very low natural gas prices in the US, and a challenging licensing process in the US for non-water reactors.

Table and Figures | Reference | Related Articles | Metrics
Desert “Soilization”: An Eco-Mechanical Solution to Desertification
Zhijian Yi, Chaohua Zhao
Engineering    2016, 2 (3): 270-273.   DOI: 10.1016/J.ENG.2016.03.002
Abstract   HTML   PDF (4298KB)
 
Table and Figures | Reference | Related Articles | Metrics
A Technical Review of Hydro-Project Development in China
Jinsheng Jia
Engineering    2016, 2 (3): 302-312.   DOI: 10.1016/J.ENG.2016.03.008
Abstract   HTML   PDF (11589KB)

This paper summarizes the development of hydro-projects in China, blended with an international perspective. It expounds major technical progress toward ensuring the safe construction of high dams and river harnessing, and covers the theorization of uneven non-equilibrium sediment transport, inter-basin water diversion, giant hydro-generator units, pumped storage power stations, underground caverns, ecological protection, and so on.

Table and Figures | Reference | Related Articles | Metrics
Research and Development of Heat-Resistant Materials for Advanced USC Power Plants with Steam Temperatures of 700 °C and Above
Fujio Abe
Engineering    2015, 1 (2): 211-224.   DOI: 10.15302/J-ENG-2015031
Abstract   HTML   PDF (1966KB)

Materials-development projects for advanced ultra-supercritical (A-USC) power plants with steam temperatures of 700 °C and above have been performed in order to achieve high efficiency and low CO2 emissions in Europe, the US, Japan, and recently in China and India as well. These projects involve the replacement of martensitic 9%−12% Cr steels with nickel (Ni)-base alloys for the highest temperature boiler and turbine components in order to provide sufficient creep strength at 700°C and above. To minimize the require­ment for expensive Ni-base alloys, martensitic 9%−12% Cr steels can be applied to the next highest temperature components of an A-USC power plant, up to a maximum of 650°C. This paper comprehensively describes the research and development of Ni-base alloys and martensitic 9%−12% Cr steels for thick section boiler and turbine components of A-USC power plants, mainly focusing on the long-term creep-rupture strength of base metal and welded joints, strength loss in welded joints, creep-fatigue properties, and microstructure evolution during exposure at elevated temperatures.

Table and Figures | Reference | Related Articles | Metrics
Reflections on the Three Gorges Project since Its Operation
Shouren Zheng
Engineering    2016, 2 (4): 389-397.   DOI: 10.1016/J.ENG.2016.04.002
Abstract   HTML   PDF (1593KB)
 
Table and Figures | Reference | Related Articles | Metrics
Key Technologies in the Design and Construction of 300 m Ultra-High Arch Dams
Renkun Wang
Engineering    2016, 2 (3): 350-359.   DOI: 10.1016/J.ENG.2016.03.012
Abstract   HTML   PDF (2717KB)

Starting with the Ertan arch dam (240 m high, 3300 MW) in 2000, China successfully built a total of seven ultra-high arch dams over 200 m tall by the end of 2014. Among these, the Jinping I (305 m), Xiaowan (294.5m), and Xiluodu (285.5 m) arch dams have reached the 300 m height level (i.e., near or over 300 m), making them the tallest arch dams in the world. The design and construction of these 300 m ultra-high arch dams posed significant challenges, due to high water pressures, high seismic design criteria, and complex geological conditions. The engineering team successfully tackled these challenges and made critical breakthroughs, especially in the area of safety control. In this paper, the author summarizes various key technological aspects involved in the design and construction of 300?m ultra-high arch dams, including the strength and stability of foundation rock, excavation of the dam base and surface treatment, dam shape optimization, safety design guidelines, seismic analysis and design, treatment of a complex foundation, concrete temperature control, and crack prevention. The experience gained from these projects should be valuable for future practitioners.

Table and Figures | Reference | Related Articles | Metrics
Let Engineering Science and Technology Create a Better Future for Humankind
H.E. XI Jinping
Engineering    2015, 1 (1): 1-3.   DOI: 10.15302/J-ENG-2015001
Abstract   HTML   PDF (1185KB)
 
Table and Figures | Reference | Related Articles | Metrics
Recent Advances in 19Fluorine Magnetic Resonance Imaging with Perfluorocarbon Emulsions
Anne H. Schmieder,Shelton D. Caruthers,Jochen Keupp,Samuel A. Wickline,Gregory M. Lanza
Engineering    2015, 1 (4): 475-489.   DOI: 10.15302/J-ENG-2015103
Abstract   HTML   PDF (2072KB)

The research roots of 19fluorine (19F) magnetic resonance imaging (MRI) date back over 35 years. Over that time span, 1H imaging flourished and was adopted worldwide with an endless array of applications and imaging approaches, making magnetic resonance an indispensable pillar of biomedical diagnostic imaging. For many years during this timeframe, 19F imaging research continued at a slow pace as the various attributes of the technique were explored. However, over the last decade and particularly the last several years, the pace and clinical relevance of 19F imaging has exploded. In part, this is due to advances in MRI instrumentation, 19F/1H coil designs, and ultrafast pulse sequence development for both preclinical and clinical scanners. These achievements, coupled with interest in the molecular imaging of anatomy and physiology, and combined with a cadre of innovative agents, have brought the concept of 19F into early clinical evaluation. In this review, we attempt to provide a slice of this rich history of research and development, with a particular focus on liquid perfluorocarbon compound-based agents.

Table and Figures | Reference | Related Articles | Metrics
The World’s Longest Tunnel
Lance A. Davis
Engineering    2016, 2 (3): 263-264.   DOI: 10.1016/J.ENG.2016.03.013
Abstract   HTML   PDF (1774KB)
 
Table and Figures | Reference | Related Articles | Metrics
Systems Neuroengineering: Understanding and Interacting with the Brain
Bradley J. Edelman, Nessa Johnson, Abbas Sohrabpour, Shanbao Tong, Nitish Thakor, Bin He
Engineering    2015, 1 (3): 292-308.   DOI: 10.15302/J-ENG-2015078
Abstract   HTML   PDF (9823KB)

In this paper, we review the current state-of-the-art techniques used for understanding the inner workings of the brain at a systems level. The neural activity that governs our everyday lives involves an intricate coordination of many processes that can be attributed to a variety of brain regions. On the surface, many of these functions can appear to be controlled by specific anatomical structures; however, in reality, numerous dynamic networks within the brain contribute to its function through an interconnected web of neuronal and synaptic pathways. The brain, in its healthy or pathological state, can therefore be best understood by taking a systems-level approach. While numerous neuroengineering technologies exist, we focus here on three major thrusts in the field of systems neuroengineering: neuroimaging, neural interfacing, and neuromodulation. Neuroimaging enables us to delineate the structural and functional organization of the brain, which is key in understanding how the neural system functions in both normal and disease states. Based on such knowledge, devices can be used either to communicate with the neural system, as in neural interface systems, or to modulate brain activity, as in neuromodulation systems. The consideration of these three fields is key to the development and application of neuro-devices. Feedback-based neuro-devices require the ability to sense neural activity (via a neuroimaging modality) through a neural interface (invasive or noninvasive) and ultimately to select a set of stimulation parameters in order to alter neural function via a neuromodulation modality. Systems neuroengineering refers to the use of engineering tools and technologies to image, decode, and modulate the brain in order to comprehend its functions and to repair its dysfunction. Interactions between these fields will help to shape the future of systems neuroengineering—to develop neurotechniques for enhancing the understanding of whole-brain function and dysfunction, and the management of neurological and mental disorders.

Table and Figures | Reference | Related Articles | Metrics
Computational Aspects of Dam Risk Analysis: Findings and Challenges
Ignacio Escuder-Bueno,Guido Mazzà,Adrián Morales-Torres,Jesica T. Castillo-Rodríguez
Engineering    2016, 2 (3): 319-324.   DOI: 10.1016/J.ENG.2016.03.005
Abstract   HTML   PDF (6375KB)

In recent years, risk analysis techniques have proved to be a useful tool to inform dam safety management. This paper summarizes the outcomes of three themes related to dam risk analysis discussed in the Benchmark Workshops organized by the International Commission on Large Dams Technical Committee on “Computational Aspects of Analysis and Design of Dams.” In the 2011 Benchmark Workshop, estimation of the probability of failure of a gravity dam for the sliding failure mode was discussed. Next, in 2013, the discussion focused on the computational challenges of the estimation of consequences in dam risk analysis. Finally, in 2015, the probability of sliding and overtopping in an embankment was analyzed. These Benchmark Workshops have allowed a complete review of numerical aspects for dam risk analysis, showing that risk analysis methods are a very useful tool to analyze the risk of dam systems, including downstream consequence assessments and the uncertainty of structural models.

Table and Figures | Reference | Related Articles | Metrics
Design and 3D Printing of Scaffolds and Tissues
Jia An, Joanne Ee Mei Teoh, Ratima Suntornnond, Chee Kai Chua
Engineering    2015, 1 (2): 261-268.   DOI: 10.15302/J-ENG-2015061
Abstract   HTML   PDF (2059KB)

A growing number of?three-dimensional (3D)-print-ing processes have been applied to tissue engineering. This paper presents a state-of-the-art study of 3D-printing technologies?for tissue-engineering applications, with particular focus on the development of a computer-aided scaffold design system; the direct 3D printing of functionally graded scaffolds; the modeling of selective laser sintering (SLS) and fused deposition modeling (FDM) processes; the indirect additive manufacturing of scaffolds, with both micro and macro features; the development of a bioreactor; and 3D/4D bioprinting. Technological limitations will be discussed so as to highlight the possibility of future improvements for new 3D-printing methodologies for tissue engineering.

Table and Figures | Reference | Related Articles | Metrics
How Does the Microbiota Affect Human Health?
Lanjuan Li
Engineering    2017, 3 (1): 1-.   DOI: 10.1016/J.ENG.2017.01.021
Abstract   HTML   PDF (563KB)
Table and Figures | Reference | Related Articles | Metrics
Key Technologies of the Hydraulic Structures of the Three Gorges Project
Xinqiang Niu
Engineering    2016, 2 (3): 340-349.   DOI: 10.1016/J.ENG.2016.03.006
Abstract   HTML   PDF (10551KB)

To date, the Three Gorges Project is the largest hydro junction in the world. It is the key project for the integrated water resource management and development of the Changjiang River. The technology of the project, with its huge scale and comprehensive benefits, is extremely complicated, and the design difficulty is greater than that of any other hydro project in the world. A series of new design theories and methods have been proposed and applied in the design and research process. Many key technological problems regarding hydraulic structures have been overcome, such as a gravity dam with multi-layer large discharge orifices, a hydropower station of giant generating units, and a giant continual multi-step ship lock with a high water head.

Table and Figures | Reference | Related Articles | Metrics
A Novel Tele-Operated Flexible Robot Targeted for Minimally Invasive Robotic Surgery
Zheng Li, Jan Feiling, Hongliang Ren, Haoyong Yu
Engineering    2015, 1 (1): 73-78.   DOI: 10.15302/J-ENG-2015011
Abstract   HTML   PDF (3530KB)

In this paper, a novel flexible robot system with a constrained tendon-driven serpentine manipulator (CTSM) is presented. The CTSM gives the robot a larger workspace, more dexterous manipulation, and controllable stiffness compared with the da Vinci surgical robot and traditional flexible robots. The robot is tele-operated using the Novint Falcon haptic device. Two control modes are implemented, direct mapping and incremental mode. In each mode, the robot can be manipulated using either the highest stiffness scheme or the minimal movement scheme. The advantages of the CTSM are shown by simulation and experimental results.

Table and Figures | Reference | Related Articles | Metrics
Emerging Trends for Microbiome Analysis: From Single-Cell Functional Imaging to Microbiome Big Data
Jian Xu, Bo Ma, Xiaoquan Su, Shi Huang, Xin Xu, Xuedong Zhou, Wei Huang, Rob Knight
Engineering    2017, 3 (1): 66-70.   DOI: 10.1016/J.ENG.2017.01.020
Abstract   HTML   PDF (813KB)

Method development has always been and will continue to be a core driving force of microbiome science. In this perspective, we argue that in the next decade, method development in microbiome analysis will be driven by three key changes in both ways of thinking and technological platforms: ① a shift from dissecting microbiota structureby sequencing to tracking microbiota state, function, and intercellular interaction via imaging; ② a shift from interrogating a consortium or population of cells to probing individual cells; and ③ a shift from microbiome data analysis to microbiome data science. Some of the recent method-development efforts by Chinese microbiome scientists and their international collaborators that underlie these technological trends are highlighted here. It is our belief that the China Microbiome Initiative has the opportunity to deliver outstanding “Made-in-China” tools to the international research community, by building an ambitious, competitive, and collaborative program at the forefront of method development for microbiome science.

Table and Figures | Reference | Related Articles | Metrics
Additive Manufacture of Ceramics Components by Inkjet Printing
Brian Derby
Engineering    2015, 1 (1): 113-123.   DOI: 10.15302/J-ENG-2015014
Abstract   HTML   PDF (2218KB)

In order to build a ceramic component by inkjet printing, the object must be fabricated through the interaction and solidification of drops, typically in the range of 10−100 pL. In order to achieve this goal, stable ceramic inks must be developed. These inks should satisfy specific rheological conditions that can be illustrated within a parameter space defined by the Reynolds and Weber numbers. Printed drops initially deform on impact with a surface by dynamic dissipative processes, but then spread to an equilibrium shape defined by capillarity. We can identify the processes by which these drops interact to form linear features during printing, but there is a poorer level of understanding as to how 2D and 3D structures form. The stability of 2D sheets of ink appears to be possible over a more limited range of process conditions that is seen with the formation of lines. In most cases, the ink solidifies through evaporation and there is a need to control the drying process to eliminate the: “coffee ring” defect. Despite these uncertainties, there have been a large number of reports on the successful use of inkjet printing for the manufacture of small ceramic components from a number of different ceramics. This technique offers good prospects as a future manufacturing technique. This review identifies potential areas for future research to improve our understanding of this manufacturing method.

Table and Figures | Reference | Related Articles | Metrics
Urban Big Data and the Development of City Intelligence
Yunhe Pan, Yun Tian, Xiaolong Liu, Dedao Gu, Gang Hua
Engineering    2016, 2 (2): 171-178.   DOI: 10.1016/J.ENG.2016.02.003
Abstract   HTML   PDF (889KB)

This study provides a definition for urban big data while exploring its features and applications of China’s city intelligence. The differences between city intelligence in China and the “smart city” concept in other countries are compared to highlight and contrast the unique definition and model for China’s city intelligence in this paper. Furthermore, this paper examines the role of urban big data in city intelligence by showing that it not only serves as the cornerstone of this trend as it also plays a core role in the diffusion of city intelligence technology and serves as an inexhaustible resource for the sustained development of city intelligence. This study also points out the challenges of shaping and developing of China’s urban big data. Considering the supporting and core role that urban big data plays in city intelligence, the study then expounds on the key points of urban big data, including infrastructure support, urban governance, public services, and economic and industrial development. Finally, this study points out that the utility of city intelligence as an ideal policy tool for advancing the goals of China’s urban development. In conclusion, it is imperative that China make full use of its unique advantages—including using the nation’s current state of development and resources, geographical advantages, and good human relations—in subjective and objective conditions to promote the development of city intelligence through the proper application of urban big data.

Table and Figures | Reference | Related Articles | Metrics
Genetically Engineered Crops
Lance A. Davis
Engineering    2016, 2 (3): 268-269.   DOI: 10.1016/J.ENG.2016.03.007
Abstract   HTML   PDF (910KB)
 
Table and Figures | Reference | Related Articles | Metrics
Advances in Energy-Producing Anaerobic Biotechnologies for Municipal Wastewater Treatment
Wen-Wei Li, Han-Qing Yu
Engineering    2016, 2 (4): 438-446.   DOI: 10.1016/J.ENG.2016.04.017
Abstract   HTML   PDF (1326KB)

Municipal wastewater treatment has long been known as a high-cost and energy-intensive process that destroys most of the energy-containing molecules by spending energy and that leaves little energy and few nutrients available for reuse. Over the past few years, some wastewater treatment plants have tried to revamp themselves as “resource factories,” enabled by new technologies and the upgrading of old technologies. In particular, there is an renewed interest in anaerobic biotechnologies, which can convert organic matter into usable energy and preserve nutrients for potential reuse. However, considerable technological and economic limitations still exist. Here, we provide an overview of recent advances in several cutting-edge anaerobic biotechnologies for wastewater treatment, including enhanced side-stream anaerobic sludge digestion, anaerobic membrane bioreactors, and microbial electrochemical systems, and discuss future challenges and opportunities for their applications. This review is intended to provide useful information to guide the future design and optimization of municipal wastewater treatment processes.

Table and Figures | Reference | Related Articles | Metrics
The Cemented Material Dam: A New, Environmentally Friendly Type of Dam
Jinsheng Jia, Michel Lino, Feng Jin, Cuiying Zheng
Engineering    2016, 2 (4): 490-497.   DOI: 10.1016/J.ENG.2016.04.003
Abstract   HTML   PDF (2412KB)

The first author proposed the concept of the cemented material dam (CMD) in 2009. This concept was aimed at building an environmentally friendly dam in a safer and more economical way for both the dam and the area downstream. The concept covers the cemented sand, gravel, and rock dam (CSGRD), the rockfill concrete (RFC) dam (or the cemented rockfill dam, CRD), and the cemented soil dam (CSD). This paper summarizes the concept and principles of the CMD based on studies and practices in projects around the world. It also introduces new developments in the CSGRD, CRD, and CSD.

Table and Figures | Reference | Related Articles | Metrics
The South-to-North Water Diversion Project
Office of the South-to-North Water Diversion Project Construction Committee, State Council, PRC
Engineering    2016, 2 (3): 265-267.   DOI: 10.1016/J.ENG.2016.03.022
Abstract   HTML   PDF (4022KB)
 
Table and Figures | Reference | Related Articles | Metrics
Noncoding RNAs and Their Potential Therapeutic Applications in Tissue Engineering
Shiying Li, Tianmei Qian, Xinghui Wang, Jie Liu, Xiaosong Gu
Engineering    2017, 3 (1): 3-15.   DOI: 10.1016/J.ENG.2017.01.005
Abstract   HTML   PDF (1142KB)

Tissue engineering is a relatively new but rapidly developing field in the medical sciences. Noncoding RNAs (ncRNAs) are functional RNA molecules without a protein-coding function; they can regulate cellular behavior and change the biological milieu of the tissue. The application of ncRNAs in tissue engineering is starting to attract increasing attention as a means of resolving a large number of unmet healthcare needs, although ncRNA-based approaches have not yet entered clinical practice. In-depth research on the regulation and delivery of ncRNAs may improve their application in tissue engineering. The aim of this review is: to outline essential ncRNAs that are related to tissue engineering for the repair and regeneration of nerve, skin, liver, vascular system, and muscle tissue; to discuss their regulation and delivery; and to anticipate their potential therapeutic applications.

Table and Figures | Reference | Related Articles | Metrics
Strategies and Principles of Distributed Machine Learning on Big Data
Eric P. Xing,Qirong Ho,Pengtao Xie,Dai Wei
Engineering    2016, 2 (2): 179-195.   DOI: 10.1016/J.ENG.2016.02.008
Abstract   HTML   PDF (5197KB)

The rise of big data has led to new demands for machine learning (ML) systems to learn complex models, with millions to billions of parameters, that promise adequate capacity to digest massive datasets and offer powerful predictive analytics (such as high-dimensional latent features, intermediate representations, and decision functions) thereupon. In order to run ML algorithms at such scales, on a distributed cluster with tens to thousands of machines, it is often the case that significant engineering efforts are required—and one might fairly ask whether such engineering truly falls within the domain of ML research. Taking the view that “big” ML systems can benefit greatly from ML-rooted statistical and algorithmic insights—and that ML researchers should therefore not shy away from such systems design—we discuss a series of principles and strategies distilled from our recent efforts on industrial-scale ML solutions. These principles and strategies span a continuum from application, to engineering, and to theoretical research and development of big ML systems and architectures, with the goal of understanding how to make them efficient, generally applicable, and supported with convergence and scaling guarantees. They concern four key questions that traditionally receive little attention in ML research: How can an ML program be distributed over a cluster? How can ML computation be bridged with inter-machine communication? How can such communication be performed? What should be communicated between machines? By exposing underlying statistical and algorithmic characteristics unique to ML programs but not typically seen in traditional computer programs, and by dissecting successful cases to reveal how we have harnessed these principles to design and develop both high-performance distributed ML software as well as general-purpose ML frameworks, we present opportunities for ML researchers and practitioners to further shape and enlarge the area that lies between ML and systems.

Table and Figures | Reference | Related Articles | Metrics
Architecture and Software Design for a Service Robot in an Elderly-Care Scenario
Norman Hendrich, Hannes Bistry, Jianwei Zhang
Engineering    2015, 1 (1): 27-35.   DOI: 10.15302/J-ENG-2015007
Abstract   HTML   PDF (8114KB)

Systems for ambient assisted living (AAL) that integrate service robots with sensor networks and user monitoring can help elderly people with their daily activities, allowing them to stay in their homes and live active lives for as long as possible. In this paper, we outline the AAL system currently developed in the European project Robot-Era, and describe the engineering aspects and the service-oriented software architecture of the domestic robot, a service robot with advanced manipulation capabilities. Based on the robot operating system (ROS) middleware, our software integrates a large set of advanced algorithms for navigation, perception, and manipulation. In tests with real end users, the performance and acceptability of the platform are evaluated.

Table and Figures | Reference | Related Articles | Metrics
Mechanism of the December 2015 Catastrophic Landslide at the Shenzhen Landfill and Controlling Geotechnical Risks of Urbanization
Yueping Yin,Bin Li,Wenpei Wang,Liangtong Zhan,Qiang Xue,Yang Gao,Nan Zhang,Hongqi Chen,Tiankui Liu,Aiguo Li
Engineering    2016, 2 (2): 230-249.   DOI: 10.1016/J.ENG.2016.02.005
Abstract   HTML   PDF (10134KB)

This paper presents findings from an investigation of the large-scale construction solid waste (CSW) landslide that occurred at a landfill at Shenzhen, Guangdong, China, on December 20, 2015, and which killed 77 people and destroyed 33 houses. The landslide involved 2.73×106 m3 of CSW and affected an area about 1100?m in length and 630?m in maximum width, making it the largest landfill landslide in the world. The investigation of this disaster used a combination of unmanned aerial vehicle surveillance and multistage remote-sensing images to reveal the increasing volume of waste in the landfill and the shifting shape of the landfill slope for nearly two years before the landslide took place, beginning with the creation of the CSW landfill in March, 2014, that resulted in the uncertain conditions of the landfill’s boundaries and the unstable state of the hydrologic performance. As a result, applying conventional stability analysis methods used for natural landslides to this case would be difficult. In order to analyze this disaster, we took a multistage modeling technique to analyze the varied characteristics of the landfill slope’s structure at various stages of CSW dumping and used the non-steady?flow?theory to explain the groundwater seepage problem. The investigation showed that the landfill could be divided into two units based on the moisture in the land: ① a front uint, consisted of the landfill slope, which had low water content; and ② a rear unit, consisted of fresh waste, which had a high water content. This structure caused two effects—surface-water infiltration and consolidation seepage that triggered the landslide in the landfill. Surface-water infiltration induced a gradual increase in pore water pressure head, or piezometric head, in the front slope because the infiltrating position rose as the volume of waste placement increased. Consolidation seepage led to higher excess pore water pressures as the loading of waste increased. We also investigated the post-failure soil dynamics parameters of the landslide deposit using cone penetration, triaxial, and ring-shear tests in order to simulate the characteristics of a flowing slide with a long run-out due to the liquefaction effect. Finally, we conclude the paper with lessons from the tens of catastrophic landslides of municipal solid waste around the world and discuss how to better manage the geotechnical risks of urbanization.

Table and Figures | Reference | Related Articles | Metrics
Fundamental Theories and Key Technologies for Smart and Optimal Manufacturing in the Process Industry
Feng Qian, Weimin Zhong, Wenli Du
Engineering    2017, 3 (2): 154-160.   DOI: 10.1016/J.ENG.2017.02.011
Abstract   HTML   PDF (1352KB)

Given the significant requirements for transforming and promoting the process industry, we present the major limitations of current petrochemical enterprises, including limitations in decision-making, production operation, efficiency and security, information integration, and so forth. To promote a vision of the process industry with efficient, green, and smart production, modern information technology should be utilized throughout the entire optimization process for production, management, and marketing. To focus on smart equipment in manufacturing processes, as well as on the adaptive intelligent optimization of the manufacturing process, operating mode, and supply chain management, we put forward several key scientific problems in engineering in a demand-driven and application-oriented manner, namely: ① intelligent sensing and integration of all process information, including production and management information; ② collaborative decision-making in the supply chain, industry chain, and value chain, driven by knowledge; ③ cooperative control and optimization of plant-wide production processes via human-cyber-physical interaction; and ④life-cycle assessments for safety and environmental footprint monitoring, in addition to tracing analysis and risk control. In order to solve these limitations and core scientific problems, we further present fundamental theories and key technologies for smart and optimal manufacturing in the process industry. Although this paper discusses the process industry in China, the conclusions in this paper can be extended to the process industry around the world.

Table and Figures | Reference | Related Articles | Metrics
Current Issue
Volume 3 • Issue 5 •
· Editorial
· Topic Insights
· News & Highlights
· Research
Table of Contents
Most Popular
Most Read
Most Download
Most Cited

Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
Today's visits ;Accumulated visits . 京ICP备11030251号-2

 Engineering