Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Most Download
Published in last 1 year | In last 2 years| In last 3 years| All| Most Downloaded in Recent Month | Most Downloaded in Recent Year|

Most Downloaded in Recent Year
Please wait a minute...
For Selected: View Abstracts Toggle Thumbnails
Marine Renewable Energy Seascape
Alistair G. L. Borthwick
Engineering    2016, 2 (1): 69-78.   DOI: 10.1016/J.ENG.2016.01.011
Abstract   HTML   PDF (3705KB)

Energy production based on fossil fuel reserves is largely responsible for carbon emissions, and hence global warming. The planet needs concerted action to reduce fossil fuel usage and to implement carbon mitigation measures. Ocean energy has huge potential, but there are major interdisciplinary problems to be overcome regarding technology, cost reduction, investment, environmental impact, governance, and so forth. This article briefly reviews ocean energy production from offshore wind, tidal stream, ocean current, tidal range, wave, thermal, salinity gradients, and biomass sources. Future areas of research and development are outlined that could make exploitation of the marine renewable energy (MRE) seascape a viable proposition; these areas include energy storage, advanced materials, robotics, and informatics. The article concludes with a sustainability perspective on the MRE seascape encompassing ethics, legislation, the regulatory environment, governance and consenting, economic, social, and environmental constraints. A new generation of engineers is needed with the ingenuity and spirit of adventure to meet the global challenge posed by MRE.

Table and Figures | Reference | Related Articles | Metrics
The Status of the US High-Temperature Gas Reactors
Andrew C. Kadak
Engineering    2016, 2 (1): 119-123.   DOI: 10.1016/J.ENG.2016.01.026
Abstract   HTML   PDF (895KB)

In 2005, the US passed the Energy Policy Act of 2005 mandating the construction and operation of a high-temperature gas reactor (HTGR) by 2021. This law was passed after a multiyear study by national experts on what future nuclear technologies should be developed. As a result of the Act, the US Congress chose to develop the so-called Next-Generation Nuclear Plant, which was to be an HTGR designed to produce process heat for hydrogen production. Despite high hopes and expectations, the current status is that high temperature reactors have been relegated to completing research programs on advanced fuels, graphite and materials with no plans to build a demonstration plant as required by the US Congress in 2005. There are many reasons behind this diminution of HTGR development, including but not limited to insufficient government funding requirements for research, unrealistically high temperature requirements for the reactor, the delay in the need for a “hydrogen” economy, competition from light water small modular light water reactors, little utility interest in new technologies, very low natural gas prices in the US, and a challenging licensing process in the US for non-water reactors.

Table and Figures | Reference | Related Articles | Metrics
Heading toward Artificial Intelligence 2.0
Yunhe Pan
Engineering    2016, 2 (4): 409-413.   DOI: 10.1016/J.ENG.2016.04.018
Abstract   HTML   PDF (452KB)

With the popularization of the Internet, permeation of sensor networks, emergence of big data, increase in size of the information community, and interlinking and fusion of data and information throughout human society, physical space, and cyberspace, the information environment related to the current development of artificial intelligence (AI) has profoundly changed. AI faces important adjustments, and scientific foundations are confronted with new breakthroughs, as AI enters a new stage: AI 2.0. This paper briefly reviews the 60-year developmental history of AI, analyzes the external environment promoting the formation of AI 2.0 along with changes in goals, and describes both the beginning of the technology and the core idea behind AI 2.0 development. Furthermore, based on combined social demands and the information environment that exists in relation to Chinese development, suggestions on the development of AI 2.0 are given.

Reference | Related Articles | Metrics
Desert “Soilization”: An Eco-Mechanical Solution to Desertification
Zhijian Yi, Chaohua Zhao
Engineering    2016, 2 (3): 270-273.   DOI: 10.1016/J.ENG.2016.03.002
Abstract   HTML   PDF (4298KB)
Table and Figures | Reference | Related Articles | Metrics
A Technical Review of Hydro-Project Development in China
Jinsheng Jia
Engineering    2016, 2 (3): 302-312.   DOI: 10.1016/J.ENG.2016.03.008
Abstract   HTML   PDF (11589KB)

This paper summarizes the development of hydro-projects in China, blended with an international perspective. It expounds major technical progress toward ensuring the safe construction of high dams and river harnessing, and covers the theorization of uneven non-equilibrium sediment transport, inter-basin water diversion, giant hydro-generator units, pumped storage power stations, underground caverns, ecological protection, and so on.

Table and Figures | Reference | Related Articles | Metrics
Let Engineering Science and Technology Create a Better Future for Humankind
H.E. XI Jinping
Engineering    2015, 1 (1): 1-3.   DOI: 10.15302/J-ENG-2015001
Abstract   HTML   PDF (1185KB)
Table and Figures | Reference | Related Articles | Metrics
A Novel Tele-Operated Flexible Robot Targeted for Minimally Invasive Robotic Surgery
Zheng Li, Jan Feiling, Hongliang Ren, Haoyong Yu
Engineering    2015, 1 (1): 73-78.   DOI: 10.15302/J-ENG-2015011
Abstract   HTML   PDF (3530KB)

In this paper, a novel flexible robot system with a constrained tendon-driven serpentine manipulator (CTSM) is presented. The CTSM gives the robot a larger workspace, more dexterous manipulation, and controllable stiffness compared with the da Vinci surgical robot and traditional flexible robots. The robot is tele-operated using the Novint Falcon haptic device. Two control modes are implemented, direct mapping and incremental mode. In each mode, the robot can be manipulated using either the highest stiffness scheme or the minimal movement scheme. The advantages of the CTSM are shown by simulation and experimental results.

Table and Figures | Reference | Related Articles | Metrics
The World’s Longest Tunnel
Lance A. Davis
Engineering    2016, 2 (3): 263-264.   DOI: 10.1016/J.ENG.2016.03.013
Abstract   HTML   PDF (1774KB)
Table and Figures | Reference | Related Articles | Metrics
Key Technologies in the Design and Construction of 300 m Ultra-High Arch Dams
Renkun Wang
Engineering    2016, 2 (3): 350-359.   DOI: 10.1016/J.ENG.2016.03.012
Abstract   HTML   PDF (2717KB)

Starting with the Ertan arch dam (240 m high, 3300 MW) in 2000, China successfully built a total of seven ultra-high arch dams over 200 m tall by the end of 2014. Among these, the Jinping I (305 m), Xiaowan (294.5m), and Xiluodu (285.5 m) arch dams have reached the 300 m height level (i.e., near or over 300 m), making them the tallest arch dams in the world. The design and construction of these 300 m ultra-high arch dams posed significant challenges, due to high water pressures, high seismic design criteria, and complex geological conditions. The engineering team successfully tackled these challenges and made critical breakthroughs, especially in the area of safety control. In this paper, the author summarizes various key technological aspects involved in the design and construction of 300?m ultra-high arch dams, including the strength and stability of foundation rock, excavation of the dam base and surface treatment, dam shape optimization, safety design guidelines, seismic analysis and design, treatment of a complex foundation, concrete temperature control, and crack prevention. The experience gained from these projects should be valuable for future practitioners.

Table and Figures | Reference | Related Articles | Metrics
Computational Aspects of Dam Risk Analysis: Findings and Challenges
Ignacio Escuder-Bueno,Guido Mazzà,Adrián Morales-Torres,Jesica T. Castillo-Rodríguez
Engineering    2016, 2 (3): 319-324.   DOI: 10.1016/J.ENG.2016.03.005
Abstract   HTML   PDF (6375KB)

In recent years, risk analysis techniques have proved to be a useful tool to inform dam safety management. This paper summarizes the outcomes of three themes related to dam risk analysis discussed in the Benchmark Workshops organized by the International Commission on Large Dams Technical Committee on “Computational Aspects of Analysis and Design of Dams.” In the 2011 Benchmark Workshop, estimation of the probability of failure of a gravity dam for the sliding failure mode was discussed. Next, in 2013, the discussion focused on the computational challenges of the estimation of consequences in dam risk analysis. Finally, in 2015, the probability of sliding and overtopping in an embankment was analyzed. These Benchmark Workshops have allowed a complete review of numerical aspects for dam risk analysis, showing that risk analysis methods are a very useful tool to analyze the risk of dam systems, including downstream consequence assessments and the uncertainty of structural models.

Table and Figures | Reference | Related Articles | Metrics
Research and Development of Heat-Resistant Materials for Advanced USC Power Plants with Steam Temperatures of 700 °C and Above
Fujio Abe
Engineering    2015, 1 (2): 211-224.   DOI: 10.15302/J-ENG-2015031
Abstract   HTML   PDF (1966KB)

Materials-development projects for advanced ultra-supercritical (A-USC) power plants with steam temperatures of 700 °C and above have been performed in order to achieve high efficiency and low CO2 emissions in Europe, the US, Japan, and recently in China and India as well. These projects involve the replacement of martensitic 9%−12% Cr steels with nickel (Ni)-base alloys for the highest temperature boiler and turbine components in order to provide sufficient creep strength at 700°C and above. To minimize the require­ment for expensive Ni-base alloys, martensitic 9%−12% Cr steels can be applied to the next highest temperature components of an A-USC power plant, up to a maximum of 650°C. This paper comprehensively describes the research and development of Ni-base alloys and martensitic 9%−12% Cr steels for thick section boiler and turbine components of A-USC power plants, mainly focusing on the long-term creep-rupture strength of base metal and welded joints, strength loss in welded joints, creep-fatigue properties, and microstructure evolution during exposure at elevated temperatures.

Table and Figures | Reference | Related Articles | Metrics
Design and 3D Printing of Scaffolds and Tissues
Jia An, Joanne Ee Mei Teoh, Ratima Suntornnond, Chee Kai Chua
Engineering    2015, 1 (2): 261-268.   DOI: 10.15302/J-ENG-2015061
Abstract   HTML   PDF (2059KB)

A growing number of?three-dimensional (3D)-print-ing processes have been applied to tissue engineering. This paper presents a state-of-the-art study of 3D-printing technologies?for tissue-engineering applications, with particular focus on the development of a computer-aided scaffold design system; the direct 3D printing of functionally graded scaffolds; the modeling of selective laser sintering (SLS) and fused deposition modeling (FDM) processes; the indirect additive manufacturing of scaffolds, with both micro and macro features; the development of a bioreactor; and 3D/4D bioprinting. Technological limitations will be discussed so as to highlight the possibility of future improvements for new 3D-printing methodologies for tissue engineering.

Table and Figures | Reference | Related Articles | Metrics
Key Technologies of the Hydraulic Structures of the Three Gorges Project
Xinqiang Niu
Engineering    2016, 2 (3): 340-349.   DOI: 10.1016/J.ENG.2016.03.006
Abstract   HTML   PDF (10551KB)

To date, the Three Gorges Project is the largest hydro junction in the world. It is the key project for the integrated water resource management and development of the Changjiang River. The technology of the project, with its huge scale and comprehensive benefits, is extremely complicated, and the design difficulty is greater than that of any other hydro project in the world. A series of new design theories and methods have been proposed and applied in the design and research process. Many key technological problems regarding hydraulic structures have been overcome, such as a gravity dam with multi-layer large discharge orifices, a hydropower station of giant generating units, and a giant continual multi-step ship lock with a high water head.

Table and Figures | Reference | Related Articles | Metrics
Genetically Engineered Crops
Lance A. Davis
Engineering    2016, 2 (3): 268-269.   DOI: 10.1016/J.ENG.2016.03.007
Abstract   HTML   PDF (910KB)
Table and Figures | Reference | Related Articles | Metrics
Recent Advances in 19Fluorine Magnetic Resonance Imaging with Perfluorocarbon Emulsions
Anne H. Schmieder,Shelton D. Caruthers,Jochen Keupp,Samuel A. Wickline,Gregory M. Lanza
Engineering    2015, 1 (4): 475-489.   DOI: 10.15302/J-ENG-2015103
Abstract   HTML   PDF (2072KB)

The research roots of 19fluorine (19F) magnetic resonance imaging (MRI) date back over 35 years. Over that time span, 1H imaging flourished and was adopted worldwide with an endless array of applications and imaging approaches, making magnetic resonance an indispensable pillar of biomedical diagnostic imaging. For many years during this timeframe, 19F imaging research continued at a slow pace as the various attributes of the technique were explored. However, over the last decade and particularly the last several years, the pace and clinical relevance of 19F imaging has exploded. In part, this is due to advances in MRI instrumentation, 19F/1H coil designs, and ultrafast pulse sequence development for both preclinical and clinical scanners. These achievements, coupled with interest in the molecular imaging of anatomy and physiology, and combined with a cadre of innovative agents, have brought the concept of 19F into early clinical evaluation. In this review, we attempt to provide a slice of this rich history of research and development, with a particular focus on liquid perfluorocarbon compound-based agents.

Table and Figures | Reference | Related Articles | Metrics
Reflections on the Three Gorges Project since Its Operation
Shouren Zheng
Engineering    2016, 2 (4): 389-397.   DOI: 10.1016/J.ENG.2016.04.002
Abstract   HTML   PDF (1593KB)
Table and Figures | Reference | Related Articles | Metrics
Urban Big Data and the Development of City Intelligence
Yunhe Pan, Yun Tian, Xiaolong Liu, Dedao Gu, Gang Hua
Engineering    2016, 2 (2): 171-178.   DOI: 10.1016/J.ENG.2016.02.003
Abstract   HTML   PDF (889KB)

This study provides a definition for urban big data while exploring its features and applications of China’s city intelligence. The differences between city intelligence in China and the “smart city” concept in other countries are compared to highlight and contrast the unique definition and model for China’s city intelligence in this paper. Furthermore, this paper examines the role of urban big data in city intelligence by showing that it not only serves as the cornerstone of this trend as it also plays a core role in the diffusion of city intelligence technology and serves as an inexhaustible resource for the sustained development of city intelligence. This study also points out the challenges of shaping and developing of China’s urban big data. Considering the supporting and core role that urban big data plays in city intelligence, the study then expounds on the key points of urban big data, including infrastructure support, urban governance, public services, and economic and industrial development. Finally, this study points out that the utility of city intelligence as an ideal policy tool for advancing the goals of China’s urban development. In conclusion, it is imperative that China make full use of its unique advantages—including using the nation’s current state of development and resources, geographical advantages, and good human relations—in subjective and objective conditions to promote the development of city intelligence through the proper application of urban big data.

Table and Figures | Reference | Related Articles | Metrics
The South-to-North Water Diversion Project
Office of the South-to-North Water Diversion Project Construction Committee, State Council, PRC
Engineering    2016, 2 (3): 265-267.   DOI: 10.1016/J.ENG.2016.03.022
Abstract   HTML   PDF (4022KB)
Table and Figures | Reference | Related Articles | Metrics
Big Data for Precision Medicine
Daniel Richard Leff, Guang-Zhong Yang
Engineering    2015, 1 (3): 277-279.   DOI: 10.15302/J-ENG-2015075
Abstract   HTML   PDF (162KB)

This article focuses on the potential impact of big data analysis to improve health, prevent and detect disease at an earlier stage, and personalize interventions. The role that big data analytics may have in interrogating the patient electronic health record toward improved clinical decision support is discussed. We examine developments in pharmacogenetics that have increased our appreciation of the reasons why patients respond differently to chemotherapy. We also assess the expansion of online health communications and the way in which this data may be capitalized on in order to detect public health threats and control or contain epidemics. Finally, we describe how a new generation of wearable and implantable body sensors may improve wellbeing, streamline management of chronic diseases, and improve the quality of surgical implants.

Reference | Related Articles | Metrics
The Power of an Idea: The International Impacts of the Grand Challenges for Engineering
C. D. Mote Jr., Dame Ann Dowling, Ji Zhou
Engineering    2016, 2 (1): 4-7.   DOI: 10.1016/J.ENG.2016.01.025
Abstract   HTML   PDF (439KB)
Reference | Related Articles | Metrics
Technical Progress on Researches for the Safety of High Concrete-Faced Rockfill Dams
Hongqi Ma,Fudong Chi
Engineering    2016, 2 (3): 332-339.   DOI: 10.1016/J.ENG.2016.03.010
Abstract   HTML   PDF (8519KB)

The concrete-faced rockfill dam (CFRD) is an important dam type in the selection of high dams to be constructed in Western China, owing to its direct utilization of local materials, good adaptability, and distinct economic advantages. Over the past decades, China has gained successful experience in the construction of 200?m CFRDs, providing the necessary technical accumulation for the development of 250–300?m ultra-high CFRDs. This paper summarizes these successful experiences and analyzes the problems of a number of major 200?m CFRDs around the world. In addition, it discusses the key technologies and latest research progress regarding safety in the construction of 250–300?m ultra-high CFRDs, and suggests focuses and general ideas for future research.

Table and Figures | Reference | Related Articles | Metrics
The Role of Hydropower in Climate Change Mitigation and Adaptation: A Review
Luis Berga
Engineering    2016, 2 (3): 313-318.   DOI: 10.1016/J.ENG.2016.03.004
Abstract   HTML   PDF (1620KB)

Hydropower is a clean, renewable, and environmentally friendly source of energy. It produces 3930?(TW•h)•a–1, and yields 16% of the world’s generated electricity and about 78% of renewable electricity generation (in 2015). Hydropower and climate change show a double relationship. On the one hand, as an important renewable energy resource, hydropower contributes significantly to the avoidance of greenhouse gas (GHG) emissions and to the mitigation of global warming. On the other hand, climate change is likely to alter river discharge, impacting water availability and hydropower generation. Hydropower contributes significantly to the reduction of GHG emissions and to energy supply security. Compared with conventional coal power plants, hydropower prevents the emission of about 3?GT CO2 per year, which represents about 9% of global annual CO2 emissions. Hydropower projects may also have an enabling role beyond the electricity sector, as a financing instrument for multipurpose reservoirs and as an adaptive measure regarding the impacts of climate change on water resources, because regulated basins with large reservoir capacities are more resilient to water resource changes, less vulnerable to climate change, and act as a storage buffer against climate change. At the global level, the overall impact of climate change on existing hydropower generation may be expected to be small, or even slightly positive. However, there is the possibility of substantial variations across regions and even within countries. In conclusion, the general verdict on hydropower is that it is a cheap and mature technology that contributes significantly to climate change mitigation, and could play an important role in the climate change adaptation of water resource availability. However, careful attention is necessary to mitigate the substantial environmental and social costs. Roughly more than a terawatt of capacity could be added in upcoming decades.

Table and Figures | Reference | Related Articles | Metrics
Architecture and Software Design for a Service Robot in an Elderly-Care Scenario
Norman Hendrich, Hannes Bistry, Jianwei Zhang
Engineering    2015, 1 (1): 27-35.   DOI: 10.15302/J-ENG-2015007
Abstract   HTML   PDF (8114KB)

Systems for ambient assisted living (AAL) that integrate service robots with sensor networks and user monitoring can help elderly people with their daily activities, allowing them to stay in their homes and live active lives for as long as possible. In this paper, we outline the AAL system currently developed in the European project Robot-Era, and describe the engineering aspects and the service-oriented software architecture of the domestic robot, a service robot with advanced manipulation capabilities. Based on the robot operating system (ROS) middleware, our software integrates a large set of advanced algorithms for navigation, perception, and manipulation. In tests with real end users, the performance and acceptability of the platform are evaluated.

Table and Figures | Reference | Related Articles | Metrics
How Does the Microbiota Affect Human Health?
Lanjuan Li
Engineering    2017, 3 (1): 1-.   DOI: 10.1016/J.ENG.2017.01.021
Abstract   HTML   PDF (563KB)
Table and Figures | Reference | Related Articles | Metrics
New Monitoring Technologies for Overhead Contact Line at 400 km·h−1
Chul Jin Cho, Young Park
Engineering    2016, 2 (3): 360-365.   DOI: 10.1016/J.ENG.2016.03.016
Abstract   HTML   PDF (6737KB)

Various technologies have recently been developed for high-speed railways, in order to boost commercial speeds from 300 km·h−1to 400 km·h−1. Among these technologies, this paper introduces the 400 km·h−1 class current collection performance evaluation methods that have been developed and demonstrated by Korea. Specifically, this paper reports details of the video-based monitoring techniques that have been adopted to inspect the stability of overhead contact line (OCL) components at 400 km·h−1 without direct contact with any components of the power supply system. Unlike conventional OCL monitoring systems, which detect contact wire positions using either laser sensors or line cameras, the developed system measures parameters in the active state by video data. According to experimental results that were obtained at a field-test site established at a commercial line, it is claimed that the proposed measurement system is capable of effectively measuring OCL parameters.

Table and Figures | Reference | Related Articles | Metrics
Emerging Trends for Microbiome Analysis: From Single-Cell Functional Imaging to Microbiome Big Data
Jian Xu, Bo Ma, Xiaoquan Su, Shi Huang, Xin Xu, Xuedong Zhou, Wei Huang, Rob Knight
Engineering    2017, 3 (1): 66-70.   DOI: 10.1016/J.ENG.2017.01.020
Abstract   HTML   PDF (813KB)

Method development has always been and will continue to be a core driving force of microbiome science. In this perspective, we argue that in the next decade, method development in microbiome analysis will be driven by three key changes in both ways of thinking and technological platforms: ① a shift from dissecting microbiota structureby sequencing to tracking microbiota state, function, and intercellular interaction via imaging; ② a shift from interrogating a consortium or population of cells to probing individual cells; and ③ a shift from microbiome data analysis to microbiome data science. Some of the recent method-development efforts by Chinese microbiome scientists and their international collaborators that underlie these technological trends are highlighted here. It is our belief that the China Microbiome Initiative has the opportunity to deliver outstanding “Made-in-China” tools to the international research community, by building an ambitious, competitive, and collaborative program at the forefront of method development for microbiome science.

Table and Figures | Reference | Related Articles | Metrics
Safety Aspects of Sustainable Storage Dams and Earthquake Safety of Existing Dams
Martin Wieland
Engineering    2016, 2 (3): 325-331.   DOI: 10.1016/J.ENG.2016.03.011
Abstract   HTML   PDF (7728KB)

The basic element in any sustainable dam project is safety, which includes the following safety elements: ① structural safety, ② dam safety monitoring, ③ operational safety and maintenance, and ④ emergency planning. Long-term safety primarily includes the analysis of all hazards affecting the project; that is, hazards from the natural environment, hazards from the man-made environment, and project-specific and site-specific hazards. The special features of the seismic safety of dams are discussed. Large dams were the first structures to be systematically designed against earthquakes, starting in the 1930s. However, the seismic safety of older dams is unknown, as most were designed using seismic design criteria and methods of dynamic analysis that are considered obsolete today. Therefore, we need to reevaluate the seismic safety of existing dams based on current state-of-the-art practices and rehabilitate deficient dams. For large dams, a site-specific seismic hazard analysis is usually recommended. Today, large dams and the safety-relevant elements used for controlling the reservoir after a strong earthquake must be able to withstand the ground motions of a safety evaluation earthquake. The ground motion parameters can be determined either by a probabilistic or a deterministic seismic hazard analysis. During strong earthquakes, inelastic deformations may occur in a dam; therefore, the seismic analysis has to be carried out in the time domain. Furthermore, earthquakes create multiple seismic hazards for dams such as ground shaking, fault movements, mass movements, and others. The ground motions needed by the dam engineer are not real earthquake ground motions but models of the ground motion, which allow the safe design of dams. It must also be kept in mind that dam safety evaluations must be carried out several times during the long life of large storage dams. These features are discussed in this paper.

Reference | Related Articles | Metrics
The Cemented Material Dam: A New, Environmentally Friendly Type of Dam
Jinsheng Jia, Michel Lino, Feng Jin, Cuiying Zheng
Engineering    2016, 2 (4): 490-497.   DOI: 10.1016/J.ENG.2016.04.003
Abstract   HTML   PDF (2412KB)

The first author proposed the concept of the cemented material dam (CMD) in 2009. This concept was aimed at building an environmentally friendly dam in a safer and more economical way for both the dam and the area downstream. The concept covers the cemented sand, gravel, and rock dam (CSGRD), the rockfill concrete (RFC) dam (or the cemented rockfill dam, CRD), and the cemented soil dam (CSD). This paper summarizes the concept and principles of the CMD based on studies and practices in projects around the world. It also introduces new developments in the CSGRD, CRD, and CSD.

Table and Figures | Reference | Related Articles | Metrics
Metamaterials: Reshape and Rethink
Ruopeng Liu, Chunlin Ji, Zhiya Zhao, Tian Zhou
Engineering    2015, 1 (2): 179-184.   DOI: 10.15302/J-ENG-2015036
Abstract   HTML   PDF (1318KB)

Metamaterials are composite materials whose material properties (acoustic, electrical, magnetic, or optical, etc.) are determined by their constitutive structural materials, especially the unit cells. The development of metamaterials continues to redefine the boundaries of materials science. In the field of electromagnetic research and beyond, these materials offer excellent design flexibility with their customized properties and their tunability under external stimuli. In this paper, we first provide a literature review of metamaterials with a focus on the technology and its evolution. We then discuss steps in the industrialization process and share our own experience.

Table and Figures | Reference | Related Articles | Metrics
Current Issue
Volume 3 • Issue 3 •
· Editorial
· Corrigendum
· News & Highlights
· Topic Insights
· Research
Table of Contents
Most Popular
Most Read
Most Download
Most Cited

Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
Today's visits ;Accumulated visits . 京ICP备11030251号-2