Submit  |   Chinese  | 
 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Online Now
Please wait a minute...
For Selected: View Abstracts Toggle Thumbnails
Additive Design and Manufacturing of Jet Engine Parts
Pinlian Han
Engineering    DOI: 10.1016/J.ENG.2017.05.017
Standardization for Additive Manufacturing in Aerospace
Holger Krueger
Engineering    DOI: 10.1016/J.ENG.2017.05.010
Methane Emissions from Grazing Holstein-Friesian Heifers at Different Ages Estimated Using the Sulfur Hexafluoride Tracer Technique
Steven J. Morrison,Judith McBride,Alan W. Gordon,Alastair R. G. Wylie,Tianhai Yan
Engineering    DOI: 10.1016/J.ENG.2017.03.018
Abstract   HTML   PDF (722KB)

Although the effect of animal and diet factors on enteric methane (CH4) emissions from confined cattle has been extensively examined, less data is available regarding CH4 emissions from grazing young cattle. A study was undertaken to evaluate the effect of the physiological state of Holstein-Friesian heifers on their enteric CH4 emissions while grazing a perennial ryegrass sward. Two experiments were conducted: Experiment 1 ran from May 2011 for 11 weeks and Experiment 2 ran from August 2011 for 10 weeks. In each experiment, Holstein-Friesian heifers were divided into three treatment groups (12 animals/group) consisting of calves, yearling heifers, and in-calf heifers (average ages: 8.5, 14.5, and 20.5 months, respectively). Methane emissions were estimated for each animal in the final week of each experiment using the sulfur hexafluoride tracer technique. Dry matter (DM) intake was estimated using the calculated metabolizable energy (ME) requirement divided by the ME concentration in the grazed grass. As expected, live weight increased with increasing animal age (P<0.001); however, there was no difference in live weight gain among the three groups in Experiment 1, although in Experiment 2, this variable decreased with increasing animal age (P<0.001). In Experiment 1, yearling heifers had the highest CH4 emissions (g·d−1) and in-calf heifers produced more than calves (P<0.001). When expressed as CH4 emissions per unit of live weight, DM intake, and gross energy (GE) intake, yearling heifers had higher emission rates than calves and in-calf heifers (P<0.001). However, the effects on CH4 emissions were different in Experiment 2, in which CH4 emissions (g·d−1) increased linearly with increasing animal age (P<0.001), although the difference between yearling and in-calf heifers was not significant. The CH4/live weight ratio was lower in in-calf heifers than in the other two groups (P<0.001), while CH4 energy output as a proportion of GE intake was lower in calves than in yearling and in-calf heifers (P<0.05). All data were then pooled and used to develop prediction equations for CH4 emissions. All relationships are significant (P<0.001), with R2 values ranging from 0.630 to 0.682. These models indicate that CH4 emissions could be increased by 0.252 g·d−1 with an increase of 1 kg live weight or by 14.9 g·d−1 with an increase of 1 kg·d−1 of DM intake; or, the CH4 energy output could be increased by 0.046 MJ·d−1 with an increase of 1 MJ·d−1 of GE intake. These results provide an alternative approach for estimating CH4 emissions from grazing dairy heifers when actual CH4 emission data are not available.

Table and Figures | Reference | Related Articles | Metrics
Leucine Supplementation in a Chronically Protein-Restricted Diet Enhances Muscle Weight and Postprandial Protein Synthesis of Skeletal Muscle by Promoting the mTOR Pathway in Adult Rats
Bo Zhang,Licui Chu,Hong Liu,Chunyuan Xie,Shiyan Qiao,Xiangfang Zeng
Engineering    DOI: 10.1016/J.ENG.2017.03.008
Abstract   HTML   PDF (715KB)

Low protein intake causes a decrease in protein deposition in most animal tissues. The purpose of this study was to investigate whether leucine supplementation would increase the synthesis rate of protein and muscle weight in adult rats, which chronically consume only 58.8% of their protein requirements. Thirty-six male Sprague-Dawley rats were assigned to one of three dietary treatments including a 20% casein diet (CON), a 10% casein+ 0.44% alanine diet (R), and a 10% casein+ 0.87% leucine diet (RL). After a 10 d dietary treatment, plasma amino acid levels were measured after feeding, the gastrocnemius muscles and soleus muscles were harvested and weighed, and the fractional synthesis rate (FSR) and mammalian target of rapamycin (mTOR) signaling proteins in skeletal muscle were measured. Regarding the plasma amino acid level, the RL group had the highest concentration of leucine (P<0.05) and the lowest concentration of isoleucine (P<0.05) among the three groups, and the CON group had a lower concentration of valine (P<0.05) than the R and RL groups. Compared with the R and RL groups, the CON group diet significantly increased (P<0.05) feed intake, protein synthesis rate, and the phosphorylation of eukaryotic initiation factor 4E binding protein 1 (4E-BP1), and decreased the weight of abdominal adipose. Compared with the R group, the RL group significantly increased in gastrocnemius muscle weight, protein synthesis rate, and phosphorylation of both ribosomal protein S6 kinase 1 (S6K1) and 4E-BP1. In conclusion, when protein is chronically restricted in adult rat diets, leucine supplementation moderately improves body weight gain and increases muscle protein synthesis through mTOR activation.

Table and Figures | Reference | Related Articles | Metrics
Nutritional and Metabolic Consequences of Feeding High-Fiber Diets to Swine: A Review
Atta K. Agyekum,C. Martin Nyachoti
Engineering    DOI: 10.1016/J.ENG.2017.03.010
Abstract   HTML   PDF (532KB)

At present, substantial amounts of low-cost, fibrous co-products are incorporated into pig diets to reduce the cost of raising swine. However, diets that are rich in fiber are of low nutritive value because pigs cannot degrade dietary fiber. In addition, high-fiber diets have been associated with reduced nutrient utilization and pig performance. However, recent reports are often contradictory and the negative effects of high-fiber diets are influenced by the fiber source, type, and inclusion level. In addition, the effects of dietary fiber on pig growth and physiological responses are often confounded by the many analytical methods that are used to measure dietary fiber and its components. Several strategies have been employed to ameliorate the negative effects associated with the ingestion of high-fiber diets in pigs and to improve the nutritive value of such diets. Exogenous fiber-degrading enzymes are widely used to improve nutrient utilization and pig performance. However, the results of research reports have not been consistent and there is a need to elucidate the mode of action of exogenous enzymes on the metabolic and physiological responses in pigs that are fed high-fiber diets. On the other hand, dietary fiber is increasingly used as a means of promoting pig gut health and gestating sow welfare. In this review, dietary fiber and its effects on pig nutrition, gut physiology, and sow welfare are discussed. In addition, areas that need further research are suggested to gain more insight into dietary fiber and into the use of exogenous enzymes to improve the utilization of high-fiber diets by pigs.

Table and Figures | Reference | Related Articles | Metrics
Molecular Structure of Feeds in Relation to Nutrient Utilization and Availability in Animals: A Novel Approach
Peiqiang Yu,Luciana L. Prates
Engineering    DOI: 10.1016/J.ENG.2017.03.007
Abstract   HTML   PDF (12023KB)

The invention and development of new research concepts, novel methodologies, and novel bioanalytical techniques are essential in advancing the animal sciences, which include feed and nutrition science. This article introduces a novel approach that shows the potential of advanced synchrotron-based bioanalytical technology for studying the effects of molecular structural changes in feeds induced by various treatments (e.g., genetic modification, gene silencing, heat-related feed processing, biofuel processing) in relation to nutrient digestion and absorption in animals. Advanced techniques based on synchrotron radiation (e.g., synchrotron radiation infrared microspectroscopy (SR-IMS) and synchrotron radiation X-ray techniques) have been developed as a fast, noninvasive, bioanalytical technology that, unlike traditional wet chemistry methods, does not damage or destroy the inherent molecular structure of the feed. The cutting-edge and advanced research tool of synchrotron light (which is a million times brighter than sunlight) can be used to explore the inherent structure of biological tissue at cellular and molecular levels at ultra-high spatial resolutions. In conclusion, the use of recently developed bioanalytical techniques based on synchrotron radiation along with common research techniques is leading to dramatic advances in animal feed and nutritional research.

Table and Figures | Reference | Related Articles | Metrics
The Biofunctions of Phytochemicals and Their Applications in Farm Animals: The Nrf2/Keap1 System as a Target
Si Qin, De-Xing Hou
Engineering    DOI: 10.1016/J.ENG.2017.03.011
Research Progress in the Application of Chinese Herbal Medicines in Aquaculture: A Review
Hongyu Pu, Xiaoyu Li, Qingbo Du, Hao Cui, Yongping Xu
Engineering    DOI: 10.1016/J.ENG.2017.03.017
Interactions between the Design and Operation of Shale Gas Networks, Including CO2 Sequestration
Sharifzadeh Mahdi, Xingzhi Wang, Nilay Shah
Engineering    DOI: 10.1016/J.ENG.2017.02.007
Abstract   HTML   PDF (4049KB)

As the demand for energy continues to increase, shale gas, as an unconventional source of methane (CH4), shows great potential for commercialization. However, due to the ultra-low permeability of shale gas reservoirs, special procedures such as horizontal drilling, hydraulic fracturing, periodic well shut-in, and carbon dioxide (CO2) injection may be required in order to boost gas production, maximize economic benefits, and ensure safe and environmentally sound operation. Although intensive research is devoted to this emerging technology, many researchers have studied shale gas design and operational decisions only in isolation. In fact, these decisions are highly interactive and should be considered simultaneously. Therefore, the research question addressed in this study includes interactions between design and operational decisions. In this paper, we first establish a full-physics model for a shale gas reservoir. Next, we conduct a sensitivity analysis of important design and operational decisions such as well length, well arrangement, number of fractures, fracture distance, CO2 injection rate, and shut-in scheduling in order to gain in-depth insights into the complex behavior of shale gas networks. The results suggest that the case with the highest shale gas production may not necessarily be the most profitable design; and that drilling, fracturing, and CO2 injection have great impacts on the economic viability of this technology. In particular, due to the high costs, enhanced gas recovery (EGR) using CO2 does not appear to be commercially competitive, unless tax abatements or subsidies are available for CO2 sequestration. It was also found that the interactions between design and operational decisions are significant and that these decisions should be optimized simultaneously.

Table and Figures | Reference | Related Articles | Metrics
Optimal Bidding and Operation of a Power Plant with Solvent-Based Carbon Capture under a CO2 Allowance Market: A Solution with a Reinforcement Learning-Based Sarsa Temporal-Difference Algorithm
Ziang Li, Zhengtao Ding, Meihong Wang
Engineering    DOI: 10.1016/J.ENG.2017.02.014
Abstract   HTML   PDF (2944KB)

In this paper, a reinforcement learning (RL)-based Sarsa temporal-difference (TD) algorithm is applied to search for a unified bidding and operation strategy for a coal-fired power plant with monoethanolamine (MEA)-based post-combustion carbon capture under different carbon dioxide (CO2) allowance market conditions. The objective of the decision maker for the power plant is to maximize the discounted cumulative profit during the power plant lifetime. Two constraints are considered for the objective formulation. Firstly, the tradeoff between the energy-intensive carbon capture and the electricity generation should be made under presumed fixed fuel consumption. Secondly, the CO2 allowances purchased from the CO2 allowance market should be approximately equal to the quantity of CO2 emission from power generation. Three case studies are demonstrated thereafter. In the first case, we show the convergence of the Sarsa TD algorithm and find a deterministic optimal bidding and operation strategy. In the second case, compared with the independently designed operation and bidding strategies discussed in most of the relevant literature, the Sarsa TD-based unified bidding and operation strategy with time-varying flexible market-oriented CO2 capture levels is demonstrated to help the power plant decision maker gain a higher discounted cumulative profit. In the third case, a competitor operating another power plant identical to the preceding plant is considered under the same CO2 allowance market. The competitor also has carbon capture facilities but applies a different strategy to earn profits. The discounted cumulative profits of the two power plants are then compared, thus exhibiting the competitiveness of the power plant that is using the unified bidding and operation strategy explored by the Sarsa TD algorithm.

Table and Figures | Reference | Related Articles | Metrics
First page | Prev page | Next page | Last page Page 1 of 1 , 10 articles found  
Current Issue
Volume 3 • Issue 4 •
· News & Highlights
· Editorial
· Topic Insights
· Research
Table of Contents
Most Popular
Most Read
Most Download
Most Cited

Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
Today's visits ;Accumulated visits . 京ICP备11030251号-2

 Engineering