Submit  |   Chinese  | 
 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Current Issue
Table of Contents Previous Issue    Next Issue
Volume 1 • Issue 4 • December 2015 • Pages 401 -512
News & Highlights
Views & Comments
Research
    • [Online] Smart Grid
    • [Online] Pharmaceutical Engineering
About the cover
For Selected: View Abstracts Toggle Thumbnails
News & Highlights
Nitroxyl, a New Generation of Positive Inotropic Agent for Heart Failure
Ye Tian, Nazareno Paolocci, Wei Dong Gao
Engineering . 2015, 1 (4): 401 -404 .   DOI: 10.15302/J-ENG-2015118
Abstract   HTML   PDF (186KB)
 
References | Related Articles | Metrics
Views & Comments
Basic Ideas of the Smart Grid
Yixin Yu, Yanli Liu, Chao Qin
Engineering . 2015, 1 (4): 405 -408 .   DOI: 10.15302/J-ENG-2015120
Abstract   HTML   PDF (0KB)
 
Figures and Tables | References | Related Articles | Metrics
Fall of the Titans The Demise of Basic Neuroscience Research
Sergio Canavero, Vincenzo Bonicalzi
Engineering . 2015, 1 (4): 409 -412 .   DOI: 10.15302/J-ENG-2015092
Abstract   HTML   PDF (276KB)
 
Figures and Tables | References | Supplementary Material | Related Articles | Metrics
Research
An Overview of the Smart Grid in Great Britain
Nick Jenkins,Chao Long,Jianzhong Wu
Engineering . 2015, 1 (4): 413 -421 .   DOI: 10.15302/J-ENG-2015112
Abstract   HTML   PDF (1468KB)

This paper presents an overview of the current status of the development of the smart grid in Great Britain (GB). The definition, policy and technical drivers, incentive mechanisms, technological focus, and the industry's progress in developing the smart grid are described. In particular, the Low Carbon Networks Fund and Electricity Network Innovation Competition projects, together with the rollout of smart metering, are detailed. A more observable, controllable, automated, and integrated electricity network will be supported by these investments in conjunction with smart meter installation. It is found that the focus has mainly been on distribution networks as well as on real-time flows of information and interaction between suppliers and consumers facilitated by improved information and communications technology, active power flow management, demand management, and energy storage. The learning from the GB smart grid initiatives will provide valuable guidelines for future smart grid development in GB and other countries.

Figures and Tables | References | Related Articles | Metrics
Agent-Based Simulation for Interconnection-Scale Renewable Integration and Demand Response Studies
David P. Chassin,Sahand Behboodi,Curran Crawford,Ned Djilali
Engineering . 2015, 1 (4): 422 -435 .   DOI: 10.15302/J-ENG-2015109
Abstract   HTML   PDF (2139KB)

This paper collects and synthesizes the technical requirements, implementation, and validation methods for quasi-steady agent-based simulations of interconnection-scale models with particular attention to the integration of renewable generation and controllable loads. Approaches for modeling aggregated controllable loads are presented and placed in the same control and economic modeling framework as generation resources for interconnection planning studies. Model performance is examined with system parameters that are typical for an interconnection approximately the size of the Western Electricity Coordinating Council (WECC) and a control area about 1/100 the size of the system. These results are used to demonstrate and validate the methods presented.

Figures and Tables | References | Related Articles | Metrics
Smart Grids with Intelligent Periphery: An Architecture for the Energy Internet
Felix F. Wu,Pravin P. Varaiya,Ron S. Y. Hui
Engineering . 2015, 1 (4): 436 -446 .   DOI: 10.15302/J-ENG-2015111
Abstract   HTML   PDF (1067KB)

A future smart grid must fulfill the vision of the Energy Internet in which millions of people produce their own energy from renewables in their homes, offices, and factories and share it with each other. Electric vehicles and local energy storage will be widely deployed. Internet technology will be utilized to transform the power grid into an energy-sharing inter-grid. To prepare for the future, a smart grid with intelligent periphery, or smart GRIP, is proposed. The building blocks of GRIP architecture are called clusters and include an energy-management system (EMS)-controlled transmission grid in the core and distribution grids, micro-grids, and smart buildings and homes on the periphery; all of which are hierarchically structured. The layered architecture of GRIP allows a seamless transition from the present to the future and plug-and-play interoperability. The basic functions of a cluster consist of ① dispatch, ② smoothing, and ③ mitigation. A risk-limiting dispatch methodology is presented; a new device, called the electric spring, is developed for smoothing out fluctuations in periphery clusters; and means to mitigate failures are discussed.

Figures and Tables | References | Related Articles | Metrics
An Approach for Cost-Efficient Grid Integration of Distributed Renewable Energy Sources
Till Luhmann,Enno Wieben,Riccardo Treydel,Michael Stadler,Thomas Kumm
Engineering . 2015, 1 (4): 447 -452 .   DOI: 10.15302/J-ENG-2015099
Abstract   HTML   PDF (1902KB)

We describe a specific approach to capacity management for distribution grids. Based on simulations, it has been found that by curtailing a maximum of 5% of the yearly energy production on a per-generator basis, distribution grid connection capacity can be doubled. We also present the setting and first results of a field test for validating the approach in a rural distribution grid in northern Germany.

Figures and Tables | References | Related Articles | Metrics
Combining Market-Based Control with Distribution Grid Constraints when Coordinating Electric Vehicle Charging
Geert Deconinck,Klaas De Craemer,Bert Claessens
Engineering . 2015, 1 (4): 453 -465 .   DOI: 10.15302/J-ENG-2015095
Abstract   HTML   PDF (2785KB)

The charging of electric vehicles (EVs) impacts the distribution grid, and its cost depends on the price of electricity when charging. An aggregator that is responsible for a large fleet of EVs can use a market-based control algorithm to coordinate the charging of these vehicles, in order to minimize the costs. In such an optimization, the operational parameters of the distribution grid, to which the EVs are connected, are not considered. This can lead to violations of the technical constraints of the grid (e.g., under-voltage, phase unbalances); for example, because many vehicles start charging simultaneously when the price is low. An optimization that simultaneously takes the economic and technical aspects into account is complex, because it has to combine time-driven control at the market level with event-driven control at the operational level. Different case studies investigate under which circumstances the market-based control, which coordinates EV charging, conflicts with the operational constraints of the distribution grid. Especially in weak grids, phase unbalance and voltage issues arise with a high share of EVs. A low-level voltage droop controller at the charging point of the EV can be used to avoid many grid constraint violations, by reducing the charge power if the local voltage is too low. While this action implies a deviation from the cost-optimal operating point, it is shown that this has a very limited impact on the business case of an aggregator, and is able to comply with the technical distribution grid constraints, even in weak distribution grids with many EVs.

Figures and Tables | References | Related Articles | Metrics
Smart Grid Wide-Area Transmission System Visualization
Thomas J. Overbye,James Weber
Engineering . 2015, 1 (4): 466 -474 .   DOI: 10.15302/J-ENG-2015098
Abstract   HTML   PDF (10310KB)

The installation of vast quantities of additional new sensing and communication equipment, in conjunction with building the computing infrastructure to store and manage data gathered by this equipment, has been the first step in the creation of what is generically referred to as the “smart grid” for the electric transmission system. With this enormous capital investment in equipment having been made, attention is now focused on developing methods to analyze and visualize this large data set. The most direct use of this large set of new data will be in data visualization. This paper presents a survey of some visualization techniques that have been deployed by the electric power industry for visualizing data over the past several years. These techniques include pie charts, animation, contouring, time-varying graphs, geographic-based displays, image blending, and data aggregation techniques. The paper then emphasizes a newer concept of using word-sized graphics called sparklines as an extremely effective method of showing large amounts of time-varying data.

Figures and Tables | References | Related Articles | Metrics
Recent Advances in 19Fluorine Magnetic Resonance Imaging with Perfluorocarbon Emulsions
Anne H. Schmieder,Shelton D. Caruthers,Jochen Keupp,Samuel A. Wickline,Gregory M. Lanza
Engineering . 2015, 1 (4): 475 -489 .   DOI: 10.15302/J-ENG-2015103
Abstract   HTML   PDF (2072KB)

The research roots of 19fluorine (19F) magnetic resonance imaging (MRI) date back over 35 years. Over that time span, 1H imaging flourished and was adopted worldwide with an endless array of applications and imaging approaches, making magnetic resonance an indispensable pillar of biomedical diagnostic imaging. For many years during this timeframe, 19F imaging research continued at a slow pace as the various attributes of the technique were explored. However, over the last decade and particularly the last several years, the pace and clinical relevance of 19F imaging has exploded. In part, this is due to advances in MRI instrumentation, 19F/1H coil designs, and ultrafast pulse sequence development for both preclinical and clinical scanners. These achievements, coupled with interest in the molecular imaging of anatomy and physiology, and combined with a cadre of innovative agents, have brought the concept of 19F into early clinical evaluation. In this review, we attempt to provide a slice of this rich history of research and development, with a particular focus on liquid perfluorocarbon compound-based agents.

Figures and Tables | References | Related Articles | Metrics
Cardiac Remote Conditioning and Clinical Relevance: All Together Now!
Kristin Luther,Yang Song,Yang Wang,Xiaoping Ren,W. Keith Jones
Engineering . 2015, 1 (4): 490 -499 .   DOI: 10.15302/J-ENG-2015117
Abstract   HTML   PDF (750KB)

Acute myocardial infarction (AMI) is the leading cause of death and disability worldwide. Timely reperfusion is the standard of care and results in decreased infarct size, improving patient survival and prognosis. However, 25% of patients proceed to develop heart failure (HF) after myocardial infarction (MI) and 50% of these will die within five years. Since the size of the infarct is the major predictor of the outcome, including the development of HF, therapies to improve myocardial salvage have great potential. Over the past three decades, a number of stimuli have been discovered that activate endogenous cardioprotective pathways. In ischemic preconditioning (IPC) and ischemic postconditioning, ischemia within the heart initiates the protection. Brief reversible episodes of ischemia in vascular beds remote from the heart can also trigger cardioprotection when applied before, during, or immediately after myocardial ischemia—known as remote ischemic pre-, per-, and post-conditioning, respectively. Although the mechanism of remote ischemic preconditioning (RIPC) has not yet been fully elucidated, many mechanistic components are shared with IPC. The discovery of RIPC led to research into the use of remote non-ischemic stimuli including nerve stimulation (spinal and vagal), and electroacupuncture (EA). We discovered and, with others, have elucidated mechanistic aspects of a non-ischemic phenomenon we termed remote preconditioning of trauma (RPCT). RPCT operates via neural stimulation of skin sensory nerves and has similarities and differences to nerve stimulation and EA conducted at acupoints. We show herein that RPCT can be mimicked using electrical stimulation of the abdominal midline (EA-like treatment) and that this modality of activating cardioprotection is powerful as both a preconditioning and a postconditioning stimulus (when applied at reperfusion). Investigations of these cardioprotective phenomena have led to a more integrative understanding of mechanisms related to cardioprotection, and in the last five to ten years, it has become clear that the mechanisms are similar, whether induced by ischemic or non-ischemic stimuli. Taking together much of the data in the literature, we propose that all of these cardioprotective “conditioning” phenomena represent activation from different entry points of a cardiac conditioning network that converges upon specific mediators and effectors of myocardial cell survival, including NF-кB, Stat3/5, protein kinase C, bradykinin, and the mitoKATP channel. Nervous system pathways may represent a novel mechanism for initiating conditioning of the heart and other organs. IPC and RIPC have proven difficult to translate clinically, as they have associated risks and cannot be used in some patients. Because of this, the use of neural and nociceptive stimuli is emerging as a potential non-ischemic and non-traumatic means to initiate cardiac conditioning. Clinical relevance is underscored by the demonstration of postconditioning with one of these modalities, supporting the conclusion that the development of pharmaceuticals and electroceuticals for this purpose is an area ripe for clinical development.

Figures and Tables | References | Related Articles | Metrics
Conjugation with Acridines Turns Nuclear Localization Sequence into Highly Active Antimicrobial Peptide
Wei Zhang,Xiaoli Yang,Jingjing Song,Xin Zheng,Jianbo Chen,Panpan Ma,Bangzhi Zhang,Rui Wang
Engineering . 2015, 1 (4): 500 -505 .   DOI: 10.15302/J-ENG-2015106
Abstract   HTML   PDF (4096KB)

The emergence of multidrug-resistant bacteria creates an urgent need for alternative antibiotics with new mechanisms of action. In this study, we synthesized a novel type of antimicrobial agent, Acr3-NLS, by conjugating hydrophobic acridines to the N-terminus of a nuclear localization sequence (NLS), a short cationic peptide. To further improve the antimicrobial activity of our agent, dimeric (Acr3-NLS)2 was simultaneously synthesized by joining two monomeric Acr3-NLS together via a disulfide linker. Our results show that Acr3-NLS and especially (Acr3-NLS)2 display significant antimicrobial activity against gram-negative and gram-positive bacteria compared to that of the NLS. Subsequently, the results derived from the study on the mechanism of action demonstrate that Acr3-NLS and (Acr3-NLS)2 can kill bacteria by membrane disruption and DNA binding. The double targets–cell membrane and intracellular DNA–will reduce the risk of bacteria developing resistance to Acr3-NLS and (Acr3-NLS)2. Overall, this study provides a novel strategy to design highly effective antimicrobial agents with a dual mode of action for infection treatment.

Figures and Tables | References | Related Articles | Metrics
A Personal Desktop Liquid-Metal Printer as a Pervasive Electronics Manufacturing Tool for Society in the Near Future
Jun Yang,Yang Yang,Zhizhu He,Bowei Chen,Jing Liu
Engineering . 2015, 1 (4): 506 -512 .   DOI: 10.15302/J-ENG-2015042
Abstract   HTML   PDF (8660KB)

It has long been a dream in the electronics industry to be able to write out electronics directly, as simply as printing a picture onto paper with an office printer. The first-ever prototype of a liquid-metal printer has been invented and demonstrated by our lab, bringing this goal a key step closer. As part of a continuous endeavor, this work is dedicated to significantly extending such technology to the consumer level by making a very practical desktop liquid-metal printer for society in the near future. Through the industrial design and technical optimization of a series of key technical issues such as working reliability, printing resolution, automatic control, human-machine interface design, software, hardware, and integration between software and hardware, a high-quality personal desktop liquid-metal printer that is ready for mass production in industry was fabricated. Its basic features and important technical mechanisms are explained in this paper, along with demonstrations of several possible consumer end-uses for making functional devices such as light-emitting diode (LED) displays. This liquid-metal printer is an automatic, easy-to-use, and low-cost personal electronics manufacturing tool with many possible applications. This paper discusses important roles that the new machine may play for a group of emerging needs. The prospective future of this cutting-edge technology is outlined, along with a comparative interpretation of several historical printing methods. This desktop liquid-metal printer is expected to become a basic electronics manufacturing tool for a wide variety of emerging practices in the academic realm, in industry, and in education as well as for individual end-users in the near future.

Figures and Tables | References | Related Articles | Metrics
13 articles
Most Popular
Most Read
Most Download
Most Cited

Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
Today's visits ;Accumulated visits . 京ICP备11030251号-2

 Engineering