期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《环境科学与工程前沿(英文)》 >> 2021年 第15卷 第4期 doi: 10.1007/s11783-020-1345-7

Characterization of electrode fouling during electrochemical oxidation of phenolic pollutant

1. State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
2. Conservation Center, Shanghai Museum, Shanghai 200231, China

发布日期: 2020-10-15

下一篇 上一篇

摘要

Abstract • Electrode fouling is characterized by non-destructive characterization. • Electrode fouling is highly dependent on electrochemical process. • Active chlorine can prevent the formation of polymeric fouling film. Electrode fouling is a problem that commonly occurs during electro-oxidation water purification. This study focused on identifying the fouling behavior of Pt electrode associated with the formation of polymeric layer during electro-oxidation of phenol. The in situ electrochemical measurements and non-destructive observation of the electrode morphology were reported. The results demonstrated that the electrode fouling was highly dependent on thermodynamic process of electrode that was controlled by anode potential. At anode potential lower than 1.0 V vs SHE, the direct electro-oxidation caused the electrode fouling by the formation of polymeric film. The fouling layer decreased the electrochemically active surface area from 8.38 cm2 to 1.57 cm2, indicated by the formation of polymeric film with thickness of 2.3 mm, increase in mass growing at a rate of 3.26 μg/cm2/min. The degree to which the anode was fouled was independent of anion in the electrolyte. In comparison, at anode potential higher than 2.7 V vs SHE, the anions (e.g., chloride) could exert a major influence to the behavior of electrode fouling. The presence of chloride was shown to mitigate the fouling of electrode significantly through preventing the formation of polymeric film by active chlorine (e.g., Cl• and Cl2) produced from anodic oxidation of chloride. Since chloride is the most abundant anionic species existing in both natural and engineered water system, this study not only offers a deep insight into the mechanism of electrode fouling, but also suggests strategies for anti-fouling in the presence of chloride in electro-oxidation process.

相关研究