期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2024年 第26卷 第3期 doi: 10.15302/J-SSCAE-2024.03.005

连续碳化硅纤维增强碳化硅陶瓷基复合材料在先进核能领域的发展研究

1. 中国科学院上海硅酸盐研究所,上海 201899
2. 中国科学院上海应用物理研究所,上海 201800
3. 中国科学院近代物理研究所,兰州 730000
4. 中国科学院合肥物质科学研究院核能安全技术研究所,合肥 230031
5. 中国科学院合肥物质科学 研究院等离子体物理研究所,合肥 230031
6. 上海核工程研究设计院股份有限公司,上海 200233
7. 中国核动力研究设计院,成都 610213

收稿日期: 2024-05-17 修回日期: 2024-06-16

下一篇 上一篇

摘要

先进核能系统的发展对核材料在多场耦合极端环境中的服役稳定性提出了更高要求。连续碳化硅纤维增强碳化硅(SiCf/SiC)陶瓷基复合材料具有低密度、高温力学性能优异、抗腐蚀、耐辐照等优点,且在外力作用下呈现“假塑性”断裂行为,被视为先进核能系统中极具应用前景的新型结构材料。本文首先从材料级、构件级、服役性能三个层面系统总结了核用SiCf/SiC复合材料的基础研究体系,分析了美国、法国、日本等传统核电强国,其他新兴核电国家和我国在核用SiCf/SiC复合材料领域的发展趋势,梳理了我国核用SiCf/SiC复合材料在原材料、数据积累和专利标准等方面存在的问题与发展面临的挑战,针对性地提出了相关措施与建议,包括加强材料制备技术研发、发展研发新范式、强化“产学研用”合作关系、在坚持以我为主的基础上加强国际交流等,以期为我国核用SiCf/SiC复合材料领域的研究方向及决策制定提供参考。

参考文献

[ 1 ] Seibert R L, Jolly B C, Balooch M, et al. Production and characterization of TRISO fuel particles with multilayered SiC [J]. Journal of Nuclear Materials, 2019, 515: 215‒226.

[ 2 ] 刘仕超, 李权, 黄永忠, 等. 中空六棱柱燃料元件热-力学性能研究 [J]. 核动力工程, 2022, 43(5): 133‒137.
Liu S C, Li Q, Huang Y Z, et al. Research on the thermal-mechanical performance of hollow hexagonal fuel element [J]. Nuclear Power Engineering, 2022, 43(5): 133‒137.

[ 3 ] Li L L, Xia Z H. Role of interfaces in mechanical properties of ceramic matrix composites [M]. Amsterdam: Elsevier, 2018: 355‒374.

[ 4 ] 王堋人, 苟燕子, 王浩. 第三代SiC纤维及其在核能领域的应用现状 [J]. 无机材料学报, 2020, 35(5): 525‒531.
Wang P R, Gou Y Z, Wang H. Third generation SiC fibers for nuclear applications [J]. Journal of Inorganic Materials, 2020, 35(5): 525‒531.

[ 5 ] 关康. CVI法制备陶瓷基复合材料的微结构演变模拟 [D]. 西安: 西北工业大学(博士学位论文), 2014.
Guan K. Computational simulation of micro-structural evolution for Chemical Vapor Infiltration process of ceramic matrix composites [D]. Xi´an: Northwestern Polytechnical University (Doctoral dissertation), 2014.

[ 6 ] Ramanuj V, Sankaran R, Jolly B, et al. Chemical vapor infiltration of additively manufactured preforms: Pore-resolved simulations and experimental validation [J]. Journal of the American Ceramic Society, 2022, 105(4): 2421‒2441.

[ 7 ] 欧阳琴, 王艳菲, 徐剑, 等. 核用碳化硅纤维增强碳化硅复合材料研究进展 [J]. 无机材料学报, 2022, 37(8): 821‒840.
Ouyang Q, Wang Y F, Xu J, et al. Research progress of SiC fiber reinforced SiC composites for nuclear application [J]. Journal of Inorganic Materials, 2022, 37(8): 821‒840.

[ 8 ] 李鸣, 张瑞谦, 何宗倍, 等. 耐事故SiCf/SiC复合材料包壳管CVI+无模具NITE制备技术研究 [J]. 核动力工程, 2020, 41(S1): 169‒173.
Li M, Zhang R Q, He Z B, et al. Study on preparation technology of accident-resistant SiCf/SiC composite cladding tube CVI+ die-less NITE [J]. Nuclear Power Engineering, 2020, 41(S1): 169‒173.

[ 9 ] 张金, 刘荣军, 王衍飞, 等. 连续纤维增强陶瓷基复合材料新型界面相研究进展 [J]. 硅酸盐学报, 2021, 49(9): 1869‒1877.
Zhang J, Liu R J, Wang Y F, et al. Progress in research on new interphases of continuous fiber reinforced ceramic matrix composites [J]. Journal of the Chinese Ceramic Society, 2021, 49(9): 1869‒1877.

[10] Yang J S, Ye F, Cheng L F. In-situ formation of Ti3SiC2 interphase in SiCf/SiC composites by molten salt synthesis [J]. Journal of the European Ceramic Society, 2022, 42(4): 1197‒1207.

[11] Li S B, Ni N, Wu B B, et al. Ti3SiC2 interphase coating in SiCf/SiC composites: Effect of the coating fabrication atmosphere and temperature [J]. Journal of the European Ceramic Society, 2021, 41(12): 5850‒5862.

[12] Lee H G, Kim D, Park J Y, et al. Formation of Ti3SiC2 interphase coating on SiCf/SiC composite by electrophoretic deposition [J]. International Journal of Applied Ceramic Technology, 2018, 15(3): 602‒610.

[13] Lee H G, Kim D, Jeong Y S, et al. Formation of Ti3SiC2 interphase of SiC fiber by electrophoretic deposition method [J]. Journal of the Korean Ceramic Society, 2016, 53(1): 87‒92.

[14] Seshadri A, Phillips B, Shirvan K. Impact of nuclear environment on hydrothermal corrosion and silica transport for CVD SiC in light water reactors [J]. Journal of Nuclear Materials, 2021, 556: 153155.

[15] Deng J G, Zhang W, Qiu X, et al. Effect of Au-ion irradiation on the morphology, microstructure and lead-bismuth eutectic corrosion behavior of refractory TiNbZrMoV high-entropy alloy coating [J]. Journal of Nuclear Materials, 2023, 584: 154592.

[16] 杨甜甜, 张典堂, 邱海鹏, 等. SiCf/SiC纺织复合材料细观结构及力学性能研究进展 [J]. 航空材料学报, 2020, 40(5): 1‒12.
Yang T T, Zhang D T, Qiu H P, et al. Research progress on meso-structure and mechanical properties of SiCf/SiC textile composites [J]. Journal of Aeronautical Materials, 2020, 40(5): 1‒12.

[17] 吴宁, 韩美月, 焦亚男, 等. 高性能纤维的可织性研究进展 [J]. 航空制造技术, 2020, 63(15): 81‒89.
Wu N, Han M Y, Jiao Y N, et al. Research progress on weavability of high-performance fibers [J]. Aeronautical Manufacturing Technology, 2020, 63(15): 81‒89.

[18] Gavalda Diaz O, Axinte D A, Butler-Smith P, et al. On understanding the microstructure of SiC/SiC Ceramic Matrix Composites (CMCs) after a material removal process [J]. Materials Science and Engineering: A, 2019, 743: 1‒11.

[19] Garcia Luna G, Axinte D, Novovic D. Influence of grit geometry and fibre orientation on the abrasive material removal mechanisms of SiC/SiC Ceramic Matrix Composites (CMCs) [J]. International Journal of Machine Tools and Manufacture, 2020, 157: 103580.

[20] Herrmann M, Lippmann W, Hurtado A. Y2O3-Al2O3-SiO2-based glass-ceramic fillers for the laser-supported joining of SiC [J]. Journal of the European Ceramic Society, 2014, 34(8): 1935‒1948.

[21] Wang H D, Feng Q, You X, et al. Microstructure and corrosion behavior of brazed joints of SiC/SiC composites and hastelloy N alloy using Cu-Ni alloy [J]. Journal of Inorganic Materials, 2022, 37(4): 452.

[22] Katoh Y, Snead L L, Henager C H Jr, et al. Current status and critical issues for development of SiC composites for fusion applications [J]. Journal of Nuclear Materials, 2007 (367‒370): 659‒671.

[23] Lu W, Wang J, Shen X Y, et al. Long-time corrosion behavior of ceramic candidates for tritium permeation barriers exposed to flowing lead lithium [J]. Corrosion Science, 2021, 184: 109380.

[24] Li B S, Sheng Y B, Liu H P, et al. Dissolution corrosion of 4H-SiC in lead-bismuth eutectic at 550 ℃ [J]. Materials and Corrosion, 2019, 70(10): 1878‒1883.

[25] Takahashi M, Kondo M. Corrosion resistance of ceramics SiC and Si3N4 in flowing lead-bismuth eutectic [J]. Progress in Nuclear Energy, 2011, 53(7): 1061‒1065.

[26] Tillack M S, Wang X R, Pulsifer J, et al. Fusion power core engineering for the ARIES-ST power plant [J]. Fusion Engineering and Design, 2003, 65(2): 215‒261.

[27] Ramírez A S P, Caso A, Giancarli L, et al. Tauro: A ceramic composite structural material self-cooled Pb—17Li breeder blanket concept [J]. Journal of Nuclear Materials, 1996, 233: 1257‒1261.

[28] 杨军, 张恩昊, 郭志恒, 等. 全球核能科技前沿综述 [J]. 科技导报, 2020, 38(20): 35‒49.
Yang J, Zhang E H, Guo Z H, et al. Recent progress of frontier nuclear energy science and technology [J]. Science & Technology Review, 2020, 38(20): 35‒49.

[29] Lee S P, Jin J O, Park J S, et al. High temperature characterization of reaction sintered SiC based materials [J]. Journal of Nuclear Materials, 2004, 329: 534‒538.

相关研究