期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2024年 第26卷 第3期 doi: 10.15302/J-SSCAE-2024.03.017

我国关键有源光纤材料发展战略研究

1. 华南理工大学物理与光电学院,广州 510640
2. 华南理工大学发光材料与器件国家重点实验室,广州 510640
3. 广东省光纤激光材料与应用技术重点实验室,广州 510640
4. 广东工业大学物理与光电工程学院,广州 510006

收稿日期: 2024-05-25 修回日期: 2024-06-18

下一篇 上一篇

摘要

光纤激光器及放大器广泛应用于智能制造、生命健康、新一代信息技术以及国防军事等领域,而有源光纤是光纤激光器和放大器的关键材料。本文综述了红外波段(近红外1 μm、近中红外1.3~1.5 μm、中红外2~3 μm)关键有源光纤材料的研究进展,从增益系数、增益带宽、特种光纤应用等角度分析了国内外有源光纤材料的发展现状和趋势,指出了我国在该领域所面临的生产设备国产化率不高、高端工业化产品不足等问题,提出了我国关键有源光纤材料未来的重点发展思路、发展方向和发展目标。最后从基本理论自主创新、产业可持续发展、推动政策体系构建、高技术产品引领、全产业链循环发展、领域人才梯队培养等方面提出了对策建议,以期推动我国关键有源光纤材料领域优质、快速发展。

参考文献

[ 1 ] Xie Z X, Shi C, Sheng Q, et al‍‍. A single-frequency 1064-nm Yb3+-doped fiber laser tandem-pumped at 1018 nm [J]‍. Optics Communications, 2020, 461: 125262‍.

[ 2 ] Kotov L V, Akbulut M, Chavez-Pirson A, et al‍. More than 100 W, 18 cm Yb-doped phosphate fiber amplifier [C]‍. San Francisco: Fiber Lasers XVI: Technology and Systems, 2019‍.

[ 3 ] Wu J W, Zhu X S, Temyanko V, et al‍. Yb3+-doped double-clad phosphate fiber for 976 nm single-frequency laser amplifiers [J]‍. Optical Materials Express, 2017, 7(4): 1310‒1316.

[ 4 ] Li H Z, Zang J C, Raghuraman S, et al‍. Large-mode-area multicore Yb-doped fiber for an efficient high power 976 nm laser [J]‍. Optics Express, 2021, 29(14): 21992‒22000‍.

[ 5 ] Limpert J, Schreiber T, Nolte S, et al‍. High-power air-clad large-mode-area photonic crystal fiber laser [J]‍. Optics Express, 2003, 11(7): 818‒823‍.

[ 6 ] Rybaltovsky A A, Lipatov D S, Lobanov A S, et al‍. Photosensitive highly Er/Yb Co-doped phosphosilicate optical fibers for continuous-wave single-frequency fiber laser applications [J]‍. Journal of the Optical Society of America B, 2020, 37(10): 3077‒3083‍.

[ 7 ] Alharbi A G, Mirza J, Raza M, et al‍. Performance enhancement of praseodymium doped fiber amplifiers [J]‍. Computers, Materials & Continua, 2022, 73(3): 5411‒5422‍.

[ 8 ] Wang Y, Halder A, Richardson D J, et al‍. A highly temperature-insensitive Bi-doped fiber amplifier in the E+S-band with 20 dB flat gain from 1435‒1475 nm [C]‍. San Diego: 2023 Optical Fiber Communications Conference and Exhibition (OFC), 2023‍.

[ 9 ] Donodin A, Manuylovich E, Dvoyrin V, et al‍. E-band telecom-compatible 40 dB gain high-power bismuth-doped fiber amplifier with record power conversion efficiency [J]‍. APL Photonics, 2024, 9: 046102‍.

[10] Huang L H, Jha A, Shen S X, et al‍. Broadband emission in Er3+-Tm3+ codoped tellurite fibre [J]‍. Optics Express, 2004, 12(11): 2429‒2434‍.

[11] Al-Azzawi A A, Almukhtar A A, Hmood J K, et al‍. Broadband ASE source for S+C+L bands using hafnia-bismuth based erbium Co-doped fibers [J]‍. Optik, 2022, 255: 168723‍.

[12] Jung Y, Kang Q Y, Sidharthan R, et al‍. Optical orbital angular momentum amplifier based on an air-hole erbium-doped fiber [J]‍. Journal of Lightwave Technology, 2017, 35(3): 430‒436‍.

[13] Amma Y, Hosokawa T, Ono H, et al‍. Ring-core multicore few-mode erbium-doped fiber amplifier [J]‍. IEEE Photonics Technology Letters, 2017, 29(24): 2163‒2166‍.

[14] Qiao T, Cheng H H, Wen X X, et al‍. High-power 2 GHz fs pulsed all-fiber amplified laser system at 2‍.0 µm [J]‍. Optics Letters, 2019, 44(24): 6001‒6004‍.

[15] Tench R E, Romano C, Delavaux J M, et al‍. In-depth studies of the spectral bandwidth of a 25 W 2 μm band PM hybrid Ho- and Tm-doped fiber amplifier [J]‍. Journal of Lightwave Technology, 2020, 38(8): 2456‒2463‍.

[16] Jewell J M, Higby P L, Aggarwal I D‍. Properties of BaO–R2O3–Ga2O3–GeO2 (R=Y, Al, La, and Gd) glasses [J]‍. Journal of the American Ceramic Society, 1994, 77(3): 697‒700‍.

[17] Ren Z Q, Ben Slimen F, Lousteau J, et al‍. Compact chirped-pulse amplification systems based on highly Tm3+-doped germanate fiber [J]‍. Optics Letters, 2021, 46(13): 3013‒3016‍.

[18] Kochanowicz M, Zmojda J, Miluski P, et al‍. Tm3+/Ho3+ Co-doped germanate glass and double-clad optical fiber for broadband emission and lasing above 2 µm [J]‍. Optical Materials Express, 2019, 9(3): 1450‒1457‍.

[19] Kochanowicz M, Zmojda J, Miluski P, et al‍. Ultra-broadband emission in Er3+/Tm3+/Ho3+ triply-doped germanate glass and double-clad optical fiber [J]‍. Optical Materials Express, 2022, 12(6): 2332‒2342‍.

[20] Kochanowicz M, Sadowska K, Markowski K, et al‍. Broadband NIR luminescence in double-core germanate optical fiber [C]‍. Strasbourg: Fiber Lasers and Glass Photonics: Materials through Applications III, 2022‍.

[21] Huang C Y, Geng J H, Luo T, et al‍. Rare earth doped optical fibers with multi-section core [J]‍. iScience, 2019, 22: 423‒429‍.

[22] Barber M J, Shardlow P C, Barua P, et al‍. Nested-ring doping for highly efficient 1907 nm short-wavelength cladding-pumped thulium fiber lasers [J]‍. Optics Letters, 2020, 45(19): 5542‒5545‍.

[23] Chen S X, Chen Y H, Liu K, et al‍. All-fiber short-wavelength tunable mode-locked fiber laser using normal dispersion thulium-doped fiber [J]‍. Optics Express, 2020, 28(12): 17570‒17580‍.

[24] Tokita S, Hirokane M, Murakami M, et al‍. Stable 10 W Er: ZBLAN fiber laser operating at 271‒288 μm [J]‍. Optics Letters, 2010, 35(23): 3943‒3945‍.

[25] Fortin V, Jobin F, Larose M, et al‍. 10-W-level monolithic dysprosium-doped fiber laser at 3‍.24 μm [J]‍. Optics Letters, 2019, 44(3): 491‒494‍.

[26] Gao X B, Cong Z H, Zhao Z G, et al‍. Single-frequency kHz-linewidth 1070 nm laser based on Yb: YAG derived silica fiber [J]‍. IEEE Photonics Technology Letters, 2020, 32(14): 895‒898‍.

[27] Wan Y, Wen J X, Jiang C, et al‍. Over 100 mW stable low-noise single-frequency ring-cavity fiber laser based on a saturable absorber of Bi/Er/Yb Co-doped silica fiber [J]‍. Journal of Lightwave Technology, 2022, 40(3): 805‒812‍.

[28] Lin Z Q, Wang F, Wang M, et al‍. Maintaining broadband gain in a Nd3+/Yb3+co-doped silica fiber amplifier via dual-laser pumping [J]‍. Optics Letters, 2018, 43(14): 3361‒3364‍.

[29] Lin Z Q, Yu C L, Hu L L‍. Laser properties of Nd3+/Yb3+ Co-doped glass fiber around 1 µm [J]‍. Journal of the Optical Society of America B, 2021, 38(8): 2443‍‒2450.

[30] Tang G W, Song X Y, Yang D L, et al‍. Broadband 1‍.0 µm emission in Nd3+/Yb3+ Co-doped phosphate glasses and fibers for photonic applications [J]‍. Optics Letters, 2023, 48(22): 5879‒5882‍.

[31] Wang F, Wang M, Shao C Y, et al‍. Highly fluorine and ytterbium doped polarization maintaining large mode area photonic crystal fiber via the Sol-gel process [J]‍. Optics Express, 2021, 29(25): 41882‍‒41893.

[32] Tian J M, Guo M T, Wang F, et al‍. High gain E-band amplification based on the low loss Bi/P Co-doped silica fiber [J]‍. Chinese Optics Letters, 2022, 20(10): 100602‍.

[33] Chen W W, Wang Y F, Zhang J, et al‍. Ultra-broadband and thermally stable NIR emission in Bi-doped glasses and fibers enabled by a metal reduction strategy [J]‍. Journal of the American Ceramic Society, 2023, 106(7): 4128‒4141‍.

[34] Lin W, Chen X W, Hu X, et al‍. Manipulating the polarization dynamics in a >10-GHz Er3+/Yb3+ fiber Fabry-Pérot laser [J]‍. Optics Express, 2022, 30(18): 32791‒32807‍.

[35] Cao C, Gu Z M, Qiu Q, et al‍. Radiation-resistant Er-doped fiber based on Ge-Ce co-doping [J]‍. IEEE Photonics Journal, 2022, 14(4): 7146605‍.

[36] Tang G W, Song X Y, Huang W H, et al‍. Broadband near-infrared amplified spontaneous emission of Er3+-doped germanate glass fiber [J]‍. Optics Letters, 2023, 48(20): 5423‒5426‍.

[37] Sun Y, Wang X, Yang Q B, et al‍. Er-doped silicate fiber amplifiers in the L-band with flat gain [J]‍. Optics Letters, 2024, 49(4): 989‒992‍.

[38] Gu Z M, Qiu Q, He L, et al‍. C-band seven-core erbium doped fiber amplifier [C]‍. Shanghai: 2021 Asia Communications and Photonics Conference (ACP), 2021‍.

[39] Zhang Y F, Zhao Y F, Fang Z W, et al‍. A novel multicore Er/Yb Co-doped microstructured optical fiber amplifier with peanut-shaped air holes cladding [J]‍. Nanophotonics, 2024, 13(6): 891‒899‍.

[40] Kuan P W, Li K F, Zhang L, et al‍. 0‍.5-GHz repetition rate fundamentally Tm-doped mode-locked fiber laser [J]‍. IEEE Photonics Technology Letters, 2016, 28(14): 1525‒1528‍.

[41] Qian G, Wang W, Tang G, et al. Tm: YAG ceramic derived multimaterial fiber with high gain per unit length for 2 μm laser applications [J]. Optics Letters. 2020, 45(5): 1047‒1050‍.

[42] Tang G, Liang Z, Huang W, et al. 4.3 GHz fundamental repetition rate passively mode-locked fiber laser using a silicate-clad heavily Tm3+-doped germanate core multimaterial fiber [J]. Optics Letters. 2022, 47(3): 682‒685.

[43] Tang G W, Liang Z H, Huang W H, et al‍. Broadband high-gain Tm3+/Ho3+ Co-doped germanate glass multimaterial fiber for fiber lasers above 2 µm [J]‍. Optics Express, 2022, 30(18): 32693‒32703‍.

[44] Yao C F, He C F, Jia Z X, et al‍. Holmium-doped fluorotellurite microstructured fibers for 2‍.1 μm lasing [J]‍. Optics Letters, 2015, 40(20): 4695‒4698‍.

[45] Xia C M, Liu J T, Zhang W, et al‍. Optical properties and laser performance of Tm3+-doped photonic crystal fiber with La2O3-Al2O3-SiO2 glass [C]‍. Singapore‍: 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), 2017‍.

[46] Xu N N, Wang P F, Wang S B, et al‍. Wavelength extension beyond 3 µm in a Ho3+/Pr3+ Co-doped AlF3-based fiber laser [J]‍. Optics Letters, 2024, 49(8): 2113‒2116‍.

相关研究