期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2024年 第26卷 第3期 doi: 10.15302/J-SSCAE-2024.03.018

“双碳”目标下我国新能源行业关键金属供应分析

清华大学环境学院,北京 100084

收稿日期: 2024-04-28 修回日期: 2024-05-29

下一篇 上一篇

摘要

电、光伏发电等新能源行业是支撑实现“双碳”目标的关键领域,我国风电、光伏发电的装机规模居世界首位,保障关键金属材料供应、进行更精准的新兴固废管理具有重要意义。本文基于我国风电、光伏发电行业的历史数据和规划目标,设定了不同的发展情景;应用风电、光伏发电设备的寿命分布模型,评估了我国新能源行业关键金属的需求、废弃和供应情况;重点识别了银、铜、镓、银、钢铁、钕等金属的供应压力,为2060年前构建绿色低碳能源发展格局提供了基础支撑。在基准情景下,2035年的风电、光伏发电行业退役量分别为4.6 GW、28.3 GW;2035年、2060年的风电、光伏发电设备退役量(按质量计)分别为2.54×106 t、1.048×107 t。从我国新能源行业的关键金属供应压力来看,2030—2060年,钢铁为低风险(≤5%),钕为中高风险(25%~50%),铜、银为高风险(50%~100%),镓、铟因需求峰值过高而被列为极度危险等级。改善新能源产业供应链的安全性和多样性,既需要确保金属矿产资源的可持续供应,也需要开展回收循环和高效利用;为此建议将风电、光伏发电退役设备按照废弃电器电子产品进行管理,将风电、光伏发电企业纳入《固定污染源排污许可分类管理名录》,加快完善分布式新能源固废回收体系,切实提高新兴固废回收技术水平。

图片

图1

图2

图3

图4

图5

图6

图7

图8

参考文献

[ 1 ] 国家能源局发布2023年全国电力工业统计数据[EB/OL]. (2024-01-18)[2024-05-22]. https://www.gov.cn/lianbo/bumen/202401/content_6928723.htm.
National Energy Administration releases national power industry statistics for 2023 [EB/OL]. (2024-01-18)[2024-05-22]. https://www.gov.cn/lianbo/bumen/202401/content_6928723.htm.

[ 2 ] 项目综合报告编写组‍. 《中国长期低碳发展战略与转型路径研究》综合报告 [J]. 中国人口·资源与环境, 2020, 30(11):1‒25.
Project Synthesis Report Writing Team. Synthesis report on China´s long-term low-carbon development strategy and transition path [J]. China Population, Resources and Environment, 2020, 30(11):1‒25.

[ 3 ] Cong N, Song Y, Zhang M, et al. Life cycle assessment of carbon reduction potential of EoL wind turbine blades disposal scenarios in China [J]. Environmental Impact Assessment Review, 2023, 100: 107072.

[ 4 ] Huang W H, Shin W J, Wang L D, et al. Strategy and technology to recycle wafer-silicon solar modules [J]. Solar Energy, 2017, 144: 22‒31.

[ 5 ] 国家能源局关于印发《风电场改造升级和退役管理办法》的通知 [EB/OL]. [2023-04-15]. https://www.gov.cn/gongbao/2023/issue_10626/202308/content_6897055.htm.
National Energy Administration on the issuance of Measures for the management of wind farm upgrading and decommissioning [EB/OL]. [2023-04-15]. https://www.gov.cn/gongbao/2023/issue_10626/202308/content_6897055.htm.

[ 6 ] Tong Y D, Huynh T D X, Khong T D. Understanding the role of informal sector for sustainable development of municipal solid waste management system: A case study in Vietnam [J]. Waste Management, 2021, 124: 118‒127.

[ 7 ] 霍文敏, 陈甲斌, 聂宾汗‍. 美国关键性矿产战略与政策演进研究——对我国矿产资源保供的启示 [J]. 中国国土资源经济, 2023, 36(9): 40‒46.
Huo W M, Chen J B, Nie B H. Research on the evolution of critical mineral strategies and policies in the United States—Enlightenment on China´s mineral resources security [J]. Natural Resource Economics of China, 2023, 36(9): 40‒46.

[ 8 ] 刘刚, 刘立涛, 欧阳锌, 等‍. 绿色低碳转型背景下关键金属循环利用战略与对策 [J]. 中国科学院院刊, 2022, 37(11): 1566‒1576.
Liu G, Liu L T, Ouyang X, et al. Recycling of critical metals in green and low-carbon transition: Strategies and countermeasures [J]. Bulletin of Chinese Academy of Sciences, 2022, 37(11): 1566‒1576.

[ 9 ] The European critical raw materials act: A quick summary on what it does and when it´s coming [EB/OL]. (2023-09-08)‍[2024-04-15]. https://riskandcompliance.freshfields.com/post/102in5d/the-european-critical-raw-materials-act-a-quick-summary-on-what-it-does-and-when.

[10] Fishman T, Graedel T E. Impact of the establishment of US offshore wind power on neodymium flows [J]. Nature Sustainability, 2019, 2: 332‒338.

[11] Majewski P, Florin N, Jit J, et al. End-of-life policy considerations for wind turbine blades [J]. Renewable and Sustainable Energy Reviews, 2022, 164: 112538.

[12] Yang J H, Zhang L X, Chang Y, et al. Understanding the material efficiency of the wind power sector in China: A spatial-temporal assessment [J]. Resources, Conservation and Recycling, 2020, 155: 104668.

[13] U.S. Department of Energy critical materials strategy [EB/OL]. (2010-12-01)[2024-04-15]. https://www.osti.gov/biblio/1000846.

[14] Weckend S, Wade A, Heath G. End-of-life management: Solar photovoltaic panels [R]. Paris: International Energy Agency, 2016.

[15] The global e-waste monitor—2017 [EB/OL]. [2024-04-15]. https://www.itu.int/en/ITU-D/Environment/Pages/Toolbox/Global-E-waste-Monitor-2017.aspx.

[16] Ren K P, Tang X, Höök M. Evaluating metal constraints for photovoltaics: Perspectives from China´s PV development [J]. Applied Energy, 2021, 282: 116148.

[17] Zhang L G, Chen Z Y, Yang C Y, et al. Global supply risk assessment of the metals used in clean energy technologies [J]. Journal of Cleaner Production, 2022, 331: 129602.

[18] Habib K, Wenzel H. Reviewing resource criticality assessment from a dynamic and technology specific perspective-using the case of direct-drive wind turbines [J]. Journal of Cleaner Production, 2016, 112: 3852‒3863.

[19] Shammugam S, Gervais E, Schlegl T, et al. Raw metal needs and supply risks for the development of wind energy in Germany until 2050 [J]. Journal of Cleaner Production, 2019, 221: 738‒752.

[20] Viebahn P, Soukup O, Sama di S, et al. Assessing the need for critical minerals to shift the German energy system towards a high proportion of renewables [J]. Renewable and Sustainable Energy Reviews, 2015, 49: 655‒671.

[21] Zhou Y J, Li J W, Rechberger H, et al. Dynamic criticality of by-products used in thin-film photovoltaic technologies by 2050 [J]. Journal of Cleaner Production, 2020, 263: 121599.

[22] Yuan P F, Li D, Feng K S, et al. Assessing the supply risks of critical metals in China´s low-carbon energy transition [J]. Global Environmental Change, 2024, 86: 102825.

[23] Ciacci L, Vassura I, Cao Z, et al. Recovering the "new twin": Analysis of secondary neodymium sources and recycling potentials in Europe [J]. Resources, Conservation and Recycling, 2019, 142: 143‒152.

[24] Elshkaki A, Graedel T E. Dynamic analysis of the global metals flows and stocks in electricity generation technologies [J]. Journal of Cleaner Production, 2013, 59: 260‒273.

[25] Faulstich S, Berkhout V, Mayer J, et al. Modelling the failure behaviour of wind turbines [J]. Journal of Physics: Conference Series, 2016, 749: 012019.

[26] The global e-waste monitor 2020: Quantities, flows and the circular economy potential [EB/OL]. [2024-04-15]. https://www.itu.int/en/ITU-D/Environment/Documents/Toolbox/GEM_2020_def.pdf.

[27] Elshkaki A, Shen L. Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications [J]. Energy, 2019, 180: 903‒917.

[28] Gómez M, Xu G C, Li Y, et al. Navigating the future: China´s photovoltaic roadmap challenges [J]. Science Bulletin, 2023, 68(21): 2491‒2494.

[29] Martínez E, Sanz F, Pellegrini S, et al. Life cycle assessment of a multi-megawatt wind turbine [J]. Renewable Energy, 2009, 34(3): 667‒673.

[30] Månberger A, Stenqvist B. Global metal flows in the renewable energy transition: Exploring the effects of substitutes, technological mix and development [J]. Energy Policy, 2018, 119: 226‒241.

[31] Li J S, Peng K, Wang P, et al. Critical rare-earth elements mismatch global wind-power ambitions [J]. One Earth, 2020, 3(1): 116‒125.

[32] Alves D P, Pavel C, Plazzotta B, et al. Raw materials demand for wind and solar PV technologies in the transition towards a decarbonised energy system [M]. Brussels: Publications Office of the European Union, 2020.

[33] Allouhi A, Rehman S, Buker M S, et al. Up-to-date literature review on Solar PV systems: Technology progress, market status and R&D [J]. Journal of Cleaner Production, 2022, 362: 132339.

[34] Gervais E, Shammugam S, Friedrich L, et al. Raw material needs for the large-scale deployment of photovoltaics—Effects of innovation-driven roadmaps on material constraints until 2050 [J]. Renewable and Sustainable Energy Reviews, 2021, 137: 110589.

[35] International technology roadmap for photovoltaic (ITRPV): Results 2019 including maturity report 2020 [EB/OL]. [2024-04-15]. https://kosen.kr/file/down/FILE_000000000050993/1.

[36] Kavlak G, McNerney J, Jaffe R L, et al. Metal production requirements for rapid photovoltaics deployment [J]. Energy & Environmental Science, 2015, 8(6): 1651‒1659.

[37] Louwen A, van Sark W, Schropp R, et al. A cost roadmap for silicon heterojunction solar cells [J]. Solar Energy Materials and Solar Cells, 2016, 147: 295‒314.

[38] 国务院关于印发2030年前碳达峰行动方案的通知方案 [EB/OL]. (2021-10-24)[2024-04-15]. https://www.gov.cn/gongbao/content/2021/content_5649731.htm.
State Council on the issuance of the program of action on carbon peaking by 2030 notice program [EB/OL]. (2021-10-24)[2024-04-15]. https://www.‍gov.‍cn/gongbao/content/2021/content_5649731.htm

[39] 中国宏观经济研究院能源研究所‍. 中国能源转型展望2021 [R]. 北京: 中国宏观经济研究院能源研究所, 2022.
Energy Research Institute of Chinese Academy of Macroeconomic Research. Outlook for China´s energy transition 2021 [R]. Beijing: Energy Research Institute of Chinese Academy of Macroeconomic Research, 2022.

[40] 赵靓‍. 1.5 MW、2 MW风电机组风轮直径发展趋势 [J]. 风能, 2014 (3): 34‒37.
Zhao L. Development trend of rotor diameter of 1.5 MW and 2 MW wind turbines [J]. Wind Energy, 2014 (3): 34‒37.

[41] 2018中国风电产业地图 [EB/OL]. [2024-04-15]. http://www.cwea.org.cn/industry_data_2018.html.
Map of China´s wind power industry in 2018 [EB/OL]. [2024-04-15]. http://www.cwea.org.cn/union_introduce.html.

[42] Global wind energy council [EB/OL]. [2024-04-15]. https://gwec.net/.

[43] 黄洁, 邓思杨, 马晓婷, 等‍. 全球铜产业发展现状与建议 [J]. 现代矿业, 2021, 37(6): 1‒5.
Huang J, Deng S Y, Ma X T, et al. Current situation of global copper industry development and suggestions [J]. Modern Mining, 2021, 37(6): 1‒5.

[44] 李鹏远, 周平, 唐金荣, 等‍. 中国铜矿资源供应风险识别与评价: 基于长周期历史数据分析预测法 [J]. 中国矿业, 2019, 28(7): 44‒51.
Li P Y, Zhou P, Tang J R, et al. Identification and evaluation of copper supply risk for China: Using method of long-term historical data analysis [J]. China Mining Magazine, 2019, 28(7): 44‒51.

[45] Minerals yearbook—Metals and minerals [EB/OL]. [2024-04-15]. https://www.usgs.gov/centers/national-minerals-information-center/minerals-yearbook-metals-and-minerals.

[46] 刘麦, 李伊兰, 张睿, 等‍. 全球镓资源现状及供需形势 [J]. 国土资源情报, 2020 (10): 50‒54, 26.
Liu M, Li Y L, Zhang R, et al. Analysis of supply and demand situation of global gallium resource [J]. Land and Resources Information, 2020 (10): 50‒54, 26.

[47] 霍文敏, 陈甲斌‍. 全球铟矿资源供需形势分析 [J]. 国土资源情报, 2020 (10): 34‒38.
Huo W M, Chen J B. Analysis of supply and demand situation of indium resources in the world [J]. Land and Resources Information, 2020 (10): 34‒38.

相关研究