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Post-transplant diabetes mellitus (PTDM) increases the risk of graft failure and death in liver transplant
(LT) recipients. Experimental studies have indicated that enteric dysbiosis mediated by immunosuppres-
sive tacrolimus (TAC) could contribute to glucose disorders, but no data on human recipients with PTDM
have been reported. Here, by combining high-throughput shotgun metagenomics sequencing and meta-
bolomics profiling, we characterized the intestinal microbiome (IM) in LT recipient cohort with or with-
out PTDM and deciphered the potential relationship among IM, TAC dosage, and diabetes. By comparing
with both non-PTDM and classical type 2 diabetes mellitus (T2DM), we identified microbial signatures of
PTDM, which was characterized by the enriched Proteobacteria and decreased Bacteroidetes.
Additionally, the altered microbes, as well as the microbial metabolomics, correlated with the dosage
of TAC. Specifically, the levels of beneficial microbes associated with PTDM were lowered in recipients
with the high TAC trough concentrations (> 5 ng∙mL–1) than those with low ones (< 5 ng∙mL–1), which
was accompanied by reduced faecal metabolites involved in the biosynthesis of a-linolenic acid and
arachidonic acid-lowering factors of developing T2DM. Moreover, these microbial signatures linked with
the extent of glucose disorders in LT recipients. In summary, the faecal microbiome and metabolome dif-
fered between PTDM and non-PTDM patients, which were linked with TAC dosage. This study was the
first to explore taxonomic alterations and bacterial gene functions to better understand the contribution
of the IM to PTDM.

� 2023 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Post-transplant diabetes mellitus (PTDM) is a common and seri-
ous complication after solid organ transplantation (SOT), such as
liver and kidney transplantation [1,2]. For example, approximately
60%–90% of liver transplant (LT) recipients develop hypergly-
caemia during the early post-transplant period [3,4], and 25%
develop PTDM in the long term [4,5], which greatly increases the
morbidity (e.g., infection and cardiovascular events) and mortality
of recipients [1]. In order to avoid the misnomer of recipients of
organ transplants who have undiagnosed diabetes mellitus before
transplantation, the term PTDM, previously called new-onset dia-
betes after organ transplantation (NODAT), was adopted in 2014
to refer to time of diagnosis rather than time of occurrence [1].
The acknowledged contributors to PTDM include nonmodifiable
factors (such as age, race, and family history) and modifiable fac-
tors (such as the use of immunosuppressive agents) [6]. The use
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of maintenance immunosuppressive agents, such as tacrolimus
(TAC), is crucial for graft health and recipient survival [7]. How-
ever, the long-term use of immunosuppressive agents is reported
to be associated with risk for the development of PTDM [8,9].
Our previous clinical research and other experimental studies
showed that immunosuppressive agents (e.g., TAC and sirolimus),
antibiotic use, and transplantation procedures caused dysbiosis
of the gut microbiome [10–12], which might contribute to the
development of PTDM.

In recent decades, increasing evidence has proven that the
intestinal microbiota (IM) plays a crucial role in the immunologic
and metabolic homeostasis of the host and the intestinal dysbiosis
is involved in the development of diabetes [13,14]. The bidirec-
tional interactions between immunosuppressive therapy and the
IM have been considered contributors to clinical consequences in
patients [15]. More recently, an experimental study showed that
the TAC-induced changes in the IM were involved in the regulation
of hyperglycaemia [16]. Intestinal dysbiosis disrupts intestinal
homeostasis and affects gut-derived metabolites, the integral
immune response, and related metabolic disorders, via the ‘‘gut–
liver axis,” which could affect graft health in recipients
[15,17,18]. However, the taxonomic changes in the human IM that
are related to PTDM progression remain unknown.

PTDM shares clinical characteristics with classic type 2 diabetes
mellitus (T2DM), including insulin resistance, decompensated
insulin release, and low-grade inflammation [1,9]. Notably, our
preliminary clinical findings showed that the changes in the IM
in LT recipients shared similar traits with diabetes and included
an increase in the levels of opportunistic pathogens and a decrease
in the levels of butyrate-producing bacteria [19,20]. However,
intestinal dysbiosis is previously defined as unbalanced microbial
components and is associated with post-transplant infections or
graft function loss [21,22]. Few recent experiments have shown
that TAC can induce intestinal dysbiosis and be correlated with
glucose disorders [12,23,24]. In addition, probiotics, prebiotics, or
antibiotics that modulate the IM have been shown to impact
TAC-induced glucose disorders in murine experimental studies
[11,16], suggesting that the IM contributes to PTDM. Thus, the
alterations in microbial gene functions related to taxonomic
changes in the IM need to be explored in human PTDM patients.

Here, we combined high-throughput shotgun metagenomics
sequencing and metabolomics profiling targeting the whole gen-
ome and metabolites, respectively, to characterize the faecal
microbial communities and metabolic molecules in LT recipients
with PTDM. We further applied omics-driven bioinformatics to
identify specific microbial lineages and potential functional
metabolites that may contribute to the development of PTDM in
recipients. This is the first metagenomics and metabolomics study
of the IM in LT recipients with PTDM. Our novel findings provide an
insightful understanding of the faecal microbiota in patients with
PTDM and facilitate efforts to better understand the pathogenesis
and microbial-targeted management of PTDM.
2. Materials and methods

2.1. Study design and enrolled patients

The subjects underwent primary liver transplantation between
2017 and 2019 in our center with at least 6 months of follow-up.
All grafts were from the national donation system. The study was
approved by Ethics Committee of the First Affiliated Hospital,
Zhejiang University School of Medicine (2017-333 and 2017-
425). The procedures were in accordance with regulations on
human organ transplant, national legal requirements, and the
Helsinki Declaration. Each recipient provided written informed
99
consent and information such as diet, agent use, and alcohol
consumption. The inclusion criteria were primary LT, stable blood
concentration of immunosuppressive agents, and home-stay
condition. The exclusion criteria were multiorgan transplant, less
than 6 months of follow-up, and incomplete clinical data.

Faecal samples and patient information were collected during
periodic outpatient follow-up appointments. Two independent
cohorts were included: a cross-observational cohort of 134 recipi-
ents and a follow-up cohort of 15 recipients. Clinical data, includ-
ing biochemistry indices related to glucose metabolism and TAC
trough concentration (TC), were collected. The TAC TC means the
valley point concentration of TAC, which is currently detected for
routine monitoring for recipients. The conventional and regulatory
targets for TAC TCs used in immunosuppression trials in LT were
maintained at 5–15 g∙L–1 (i.e., 10–15 ng∙mL–1 during the first 4–6
weeks and 5–10 ng∙mL–1 thereafter) [25,26].

The LT recipients were considered to have PTDMwhen they had
a fasting glucose level of � 7.0 mmol∙L–1, a non-fasting glucose
level of � 11.1 mmol∙L–1 confirmed on at least two occasions or
a need for antidiabetic agents after the first post-transplant month
[4]. A total of 55 recipients in the discovery cohort were excluded
for the following reasons: ① presence of severe complications,
such as multiorgan dysfunction syndrome (MODS), sepsis, tumour
recurrence, biliary stricture, and biliary and/or vascular complica-
tions through measuring serum C-reactive protein and procalci-
tonin levels, imaging examination, and so forth; ② infection with
human immunodeficiency virus, hepatitis C virus, or other types
of hepatitis virus except hepatitis B virus;③ presence of organ fail-
ure or any other organ-specific diseases, including intestinal dis-
eases and pancreatic diseases; ④ consumption of alcohol,
tobacco, Chinese herbal medicine, and/or recreational drugs; and
⑤ re-transplantation or loss to follow-up. In the end, the study
cohorts were composed of a cross-observational cohort of the 79
LT recipients, including 25 with PTDM and 54 without PTDM,
and a follow-up cohort (independent) of 15 recipients treated with
TAC (Fig. 1 and Table 1 [27]). Further, the metagenomics data from
a cohort of 47 T2DM patients were included to perform the feacal
microbiota difference analysis between PTDM and T2DM [28].
2.2. Sample collection, preparation, and DNA extraction

Fresh stool samples were collected, quick-frozen in liquid nitro-
gen, and then stored at –80�C until analysis as previously described
[29]. For metagenomics analysis, total faecal genomic DNA was
extracted with a QIAamp� fast DNA Stool Mini Kit (Qiagen,
Germany) according to the manufacturer’s protocol.
2.3. Metagenomics analysis

The DNA was extracted and sequenced on an Illumina HiSeq
platform [30], and then 2�250-bp paired-end sequencing reads
were generated. The DNA reads were assessed with KneadData
(version 0.7.2) for quality control, and human contamination was
removed by using bowtie2 (version 2.2.6). The profiles of microbial
composition and function were annotated by MetaPhlAn2 (version
2.7.7) [31] and HUMAnN2 (version 0.11.2) [32] with the UniRef90
database. Biomarkers within the microbiome at the species level
were explored using linear discriminant analysis effect size (LEfSe)
[33]. We calculated the Bray–Curtis distance of the above two
indices with their relative abundance dataset to examine the b
diversity of microbial composition and function using the vegdist
function in the R (version 3.6.3) package vegan (version 2.6-2).
Then, we conducted principal coordinate analysis (PCoA) using
the function capscale in the same package.



Fig. 1. Study design. A total of 149 LT recipients were enrolled. The discovery cohort of 79 LT recipients included 25 with PTDM and 54 without PTDM (non-PTDM). The faecal
microbiota characteristics of 79 LT recipients were analyzed by whole shotgun metagenomics sequencing. In the TAC-related microbiota analysis, the 16 LT recipients were
not followed, because of the administration of the immunosuppression sirolimus or both sirolimus and TAC. Further, the independent validation cohort of 15 LT recipients
included 6 with high-TAC TCs (TAC-H, > 5 ng∙mL–1) and 9 treated with low-TAC TCs (TAC-L, < 5 ng∙mL–1). The faecal metabolites were analyzed by high-throughput
untargeted metabolomics. FBG: fasting blood glucose; HOMA-IR: homeostasis model assessment-insulin resistance.

y https://www.metaboanalyst.ca.
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2.4. High-throughput untargeted metabolomics profiling

For metabolomics analysis, stool samples were prepared [34]
and detected according to previously established methods
[34,35]. The samples were detected by a Dionex UltiMate 3000
RS ultraperformance liquid chromatography (UPLC) system
according to previously established methods. Briefly, the gradient
mobile phase consisted of water containing 0.1% formic acid (A)
and methanol containing 0.1% formic acid (B) under electrospray
ionization-positive (ESI+) mode and water and methanol contain-
ing 0.1% formic acid under ionization-negative (ESI–) mode. Mass
spectrometric analysis was performed by Q Exactive HF-X mass
spectrometry (MS) with a heated-ESI-II (HESI-II) ion source
(Thermo Fisher Scientific, USA).

The acquisition mode was full MS with a scan range of 70–1050
m/z followed by data-dependent mass spectrometers (dd-MS2).
Raw data were collected by XcaliburTM 4.1 software and processed
by Compound DiscovererTM 3.1 software (Thermo Fisher Scientific).
Orthogonal partial least squares-discriminant analysis (OPLS-DA)
100
models were generated by SIMCA-P 13.0 (Umetrics AB, Sweden).
The heatmap and bubble chart were generated by metaboanalysty.
2.5. Statistical analysis

Statistical analysis was performed by Statistical Package for the
Social Sciences (SPSS) software (version 23.0) and GraphPad Prism
software (version 7.0). Data were tested for normality of variable
distributions and presented as the mean ± standard error of the
mean (SEM) or median with 10th–90th percentiles. The signifi-
cance of differences between groups was analyzed by t test or
Mann–Whitney test. As previously described [36], to assess the
potential prediction effect of key microbes for PTDM, multivariable
logistic regression models based on the relative abundance of the
fecal microbiome were built in a stepwise manner (likelihood
backward). The receiver operating characteristic (ROC) curve and

https://www.metaboanalyst.ca


Table 1
Characteristics of liver recipients with or without PTDM mellitus in discovery cohort of the study.

Characteristics PTDM (n = 25) Non-PTDM (n = 54) P value

Age (year) 48.1 ± 8.6 43.7 ± 10.5 0.084
Male, n (proportion) 18 (72%) 47 (87%) 0.104
BMI (kg∙m–2) 24.3 ± 3.1 23.5 ± 3.0 0.352
Serum triglyceride (mmol∙L–1) 1.5 ± 0.9 1.3 ± 0.5 0.175
Serum total cholesterol (mmol∙L–1) 4.5 ± 1.2 4.1 ± 1.0 0.077
FBG (mmol∙L–1) 7.9 ± 2.4 5.3 ± 0.6 0*
Fasting serum C-peptide (ng∙mL–1) 1.3 ± 0.4 1.2 ± 0.4 0.808
Insulin (mU∙L–1) 9.0 ± 3.3 6.8 ± 3.9 0.043*
HOMA-IRa 3.4 ± 1.8 1.6 ± 1.0 0.002*
HOMA-b 38.1 (23.8, 103.9) 68.7 (22.2, 156.7) 0.070
Alanine aminotransferase (U∙L–1) 28.5 (21.3, 27.0) 22.5 (17.0, 35.0) 0.171
Aspartate aminotransferase (U∙L–1) 23.5 (22.0, 27.0) 23.5 (19.0, 33.0) 0.491
Serum creatinine (mg∙dL–1) 0.9 (0.8, 1.0) 0.9 (0.83 1.1) 0.647
TAC maintenance concentration (ng∙mL–1) 3.5 ± 1.8 3.8 ± 1.6 0.394

BMI: body mass index.
a IR was considered as HOMA-IR > 2.69 [27].
* the P value < 0.05 was considered statistically significant.
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the area under the ROC curve (AUC) were calculated to evaluate
the predictor performance of the final model. Results with a P value
< 0.05 were considered statistically significant. The network dia-
gram was generated by Cytoscape software (version 3.8.0). The
heatmap was generated by ImageGPy or MetaboAnalyst�.
2.6. Data availability statement

Data availability statement raw sequence data from this exper-
iment has been deposited in the National Center for Biotechnology
Information with primary access code PRJNA687069 and
SRP298863. Other data are available on reasonable request.
3. Results

3.1. Shifted IM in LT recipients with PTDM

A total of 79 LT recipients comprised the cross-observational
cohort, including 25 LT recipients with PTDM and 54 non-PTDM.
The detailed characteristics of LT recipients with or without PTDM
were list in Table 1. Based on the shotgun metagenomics sequenc-
ing technique, we characterized the alterations of both the compo-
sition and function in the IM associated with PTDM. As shown in
Fig. 2(a), the distinctions in the microbial composition between
these two groups were presented by the PCoA plotting. Further
to identify the differentially abundant potential biomarkers for
PTDM, we applied the LEfSe analysis and found that the species
Paraprevotella clara, belonging to the phylum Bacteroidetes, was
enriched in the non-PTDM group, while the genus Proteus, species
Proteus mirabilis and Klebsiella oxytoca, belonging to the phylum
Proteobacteria, and pathogenic species Bacteroides ovatus were
enriched in the PTDM group (Fig. 2(b)).

Then, we performed the comparison between LT recipients with
or without PTDM at the broad taxonomic levels (Fig. 2(c)). Corre-
spondingly, at the phylum level, the relative abundance of Pro-
teobacteria was higher while the abundance of Bacteroidetes was
lower in PTDM patients than that in non-PTDM group. Major dif-
ferences in the phyla Proteobacteria and Bacteroidetes between
PTDM and non-PTDM patients were observed from the phylum
level down to lower taxonomic species levels. Interestingly, PTDM
recipients showed a higher relative abundance of inflammatory
y http://www.ehbio.com/ImageGP/index.php/Home/.
� https://www.metaboanalyst.ca.
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class Gammaproteobacteria, order Enterobacteriales, family Enter-
obacteriaceae, genus Escherichia, and species Escherichia coli but a
lower relative abundance of class Bacteroidia, order Bacteroidales,
and species Bacteroides plebeius than those in recipients without
PTDM (Fig. 2(d)).

To further explore the IM feature of PTDM, we compared the
shotgunmetagenomics sequencing data between our cohort in this
study and an independent non-transplant classical T2DM cohort
from our recent study. The detail characteristics of T2DM cohort
were list in Table S1 in Appendix A. There was significant segrega-
tion in the microbial composition between PTDM and T2DM
groups as shown by PCoA plotting (Fig. 3(a)). At the phylum level,
the compositions of feacal microbiome of PTDM and T2DM groups
were different (Fig. 3(b)). Moreover, the relative abundance of Fir-
micutes and Actinobacteria was decreased while the abundance of
Proteobacteria and Fusobacteria was increased in PTDM when
compared with that in T2DM group (Fig. 3(c)). Additionally, the
LT recipient group (PTDM and non-PTDM) had the increased Pro-
teobacteria, Bacteroidetes, Synergistetes, and decreased Firmi-
cutes, Actinobacteria, Verrucomicrobia, when compared with
T2DM group. These results demonstrated the IM of PTDM was
specific and different from that of classical T2DM.

3.2. Dosage-response effect of TAC on gut microbiome in LT recipients

It is highly suggested by the mice experiments that the use of
immunosuppressive TAC contributed to the glucose disorders
[11,16], but remain unknown in human. Thus, to investigate the
dosage-effect of TAC treatment on the IM in LT recipient cohort,
we grouped the LT recipients into two groups: one with high TAC
TCs (TAC-H, > 5 ng∙mL–1) and the other with low TAC TCs (TAC-L,
< 5 ng∙mL–1). The characteristics of the two subgroups were list
and compared (Table 2). Interestingly, we found that the higher
serum insulin levels were displayed in the LT recipients of TAC-H
group, supporting the hypothesis on the potential effects of TAC
on glucose metabolism in LT recipients. The similar results were
found in subgroups of PTDM and non-PTDM (Table S2 in Appendix
A). Furthermore, we explored the potential correlation between
the use of TAC and the IM dysbiosis in LT recipients. The significant
differences in the b-diversity of IM between the TAC-H and TAC-L
groups were indicated by the PCoA plotting (Fig. 4(a)). Then, we
found the distinguished microbes between the two groups by LEfSe
analysis (Figs. 4(b) and (c)). For instance, the taxa of the phylum
Bacteroidetes, including class Bacteroidia, order Bacteroidales,
family Bacteroidaceae, genus Bacteroides, species Bacteroides dorei,

http://www.ehbio.com/ImageGP/index.php/Home/
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Fig. 2. Differences in the faecal microbiome between LT recipients with and without PTDM. (a) PCoA score plot based on Bray–Curtis distance matrices. Each point represents
one subject. The display was based on sample scores on the primary constrained axis (CAP1) and primary multidimensional scaling (MDS1). (b) LEfSe analysis showed the key
discriminative biomarkers with linear discriminant analysis (LDA) score with log10 scale > 2 between groups. (c) The relative abundance of faecal microbes at the phylum
level. (d) The relative abundances of the phyla Bacteroidetes and Proteobacteria and their taxa. Non-PTDM, n = 54; PTDM, n = 25. Data are expressed as the mean ± SEM. *P <
0.05 p: phylum; c: class; o: order; f: family; g: genus; s: species; t: strain; GCF: assembled genomes from National Center for Biotechnology Information.
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Bacteroides thetaiotaomicron, and other lower taxonomic levels,
were enriched in TAC-H group; the taxa of the phylum Actinobac-
teria, including the order Bifidobacteriales, family Bifidobacteri-
aceae, genus Bifidobacterium, class Clostridia, genus
Faecalibacterium, species Faecalibacterium prausnitzii, genus Alis-
tipes, species Alistipes putredinis, were enriched in TAC-L group.
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Thus, our findings suggested that TAC may induce insulin resis-
tance in human LT recipients and further lead to PTDM via affect-
ing gut microbial homeostasis.

Then, we found that the levels of most of the distinct microbes
belonging to the phyla Firmicutes and Actinobacteria were lower
in the TAC-H group than those in the TAC-L group, and were



Fig. 3. Differences in the faecal microbiome between patients with PTDM and classical T2DM. (a) PCoA score plot based on Bray–Curtis distance matrices. Each point
represents one subject. (b) The composition of faecal microbiome at the phylum level. (c) The relative abundances of the predominant phylum among PTDM, T2DM, and non-
PTDM groups. Non-PTDM, n = 54; PTDM, n = 25; T2DM, n = 47. Data are expressed as the mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001 , ****P < 0.0001.
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negatively related to the TAC TCs (Figs. 4(d) and (e)). Major signif-
icant differences in the relative abundance of the phyla Firmicutes,
Actinobacteria, and Bacteroidetes between the two groups were
observed at broad taxonomic levels from phylum to species level
(Figs. 4(d)–(f)). Notably, the levels of health-beneficial bacteria,
including the Bifidobacterium, Bifidobacterium longum, Bifidobac-
terium pseudocatenulatum, and Faecalibaterium prausnitzii, and
short-chain fatty acid (SCFA)-producing bacteria, including the
species and genus of Alistipes, decreased in the TAC-H group and
were negatively related to the TAC TCs. Moreover, the levels of
most of the distinct bacteria belonging to the phylum Bacteroide-
tes enriched in the TAC-H group and were positively related to
the TAC TCs (Fig. 4(f)). Thus, the dosage-response effect of TAC
on IM highly suggested a role for the use of TAC in disturbing the
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gut microbiome and further leading to the development of PTDM
in LT recipients.

3.3. Alterations in metabolome in LT recipients with TAC treatment

To further examine the effects of TAC on the microbial gene
functions related to the development of PTDM in LT recipients,
we performed untargeted metabolomics analysis of feacal samples
in a follow-up validation cohort of 15 LT recipients. The detailed
characteristics of the validation cohort were list in Table 2. The
subjects in the validation cohort were also divided into two sub-
groups: 9 LT recipients with low TAC TCs (TAC-L, < 5 ng∙mL–1),
and 6 recipients with high TAC TCs (TAC-H, > 5 ng∙mL–1). Impor-
tantly, the faecal metabolomic profiles of the two groups were



Table 2
Characteristics of LT recipients grouped according to their TAC trough concentration in the study.

Characteristics Discovery cohort Validation cohort

TAC-L TAC-H P TAC-L TAC-H P

n 47 16 — 9 6 —
TAC trough concentration (ng∙mL–1) 2.7 ± 1.2 6.3 ± 0.9 0* 2.6 ± 1.9 6.9 ± 1.8 0.001*
Age (year) 45.9 ± 10.8 42.4 ± 7.8 0.260 49.8 ± 3.0 54.0 ± 10.8 0.423
Male, n 41 12 0.882 5 5 0.264
FBG (mmol∙L–1) 6.4 ± 2.2 5.9 ± 1.4 0.381 5.4 ± 0.9 7.9 ± 5.5 0.183
Insulin (mU∙L–1) 6.6 ± 3.4 10.5 ± 4.0 0.023* — — —
Serum triglyceride (mmol∙L–1) 1.3 ± 0.7 1.5 ± 0.6 0.281 1.2 ± 0.6 1.2 ± 0.6 0.867
Alanine aminotransferase (U∙L–1) 27.0 (21.0, 35.0) 22.5 (15.5, 33.0) 0.299 32.0 (12.5, 59.0) 47.5 (11.5, 80.0) 0.689
Aspartate aminotransferase (U∙L–1) 23.0 (21.0, 27.5) 30.0 (19.0, 39.8) 0.745 48.0 (23.5, 66.5) 23.5 (18.5, 38.5) 0.145

The 16 subjects of the discovery cohort (PTDM, n = 4; non-PTDM, n = 12) did not perform the detection of TAC maintenance concentration because of the use of sirolimus or
both sirolimus and TAC.
* the P value < 0.05 was considered statistically significant.
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clearly separated in the OPLS-DA plot based on the UPLC�MS data
obtained from both negative and positive ion mode analysis of fae-
cal samples (Figs. 5(a) and (b)). The permutation test of the OPLS-
DA model supported the validation of the model (Fig. S1 in Appen-
dix A).

Further to analysis the metabolomic differences between TAC-L
and TAC-H recipients, the 26 most important metabolites were
identified and clustered (P < 0.05) (Fig. 5(c); Table S3 in Appendix
A). The cluster heatmaps showed the differential metabolomic pro-
files between the two groups; 7 metabolites were enriched in the
TAC-H group and 19metabolites were enriched in the TAC-L group.
For instance, kynurenic acid, 1-linoleoyl glycerol, b-muricholic
acid, and phosphatidylcholine (PC) 36:4 levels were increased in
the TAC-H group, while arachidonic acid, docosahexaenoic acid,
(+/�)12(13)-dihydroxy-9Z-octadecenoic acid (12(13)-DiHOME),
a-linolenic acid, indole-3-lactic acid, and 5-methoxysalicylic acid
were enriched in the TAC-L group.

These 26 metabolites were annotated to nine metabolic path-
ways, mainly a-linolenic acid metabolism, arachidonic acid meta-
bolism, biosynthesis of unsaturated fatty acids, linoleic acid
metabolism, pentose and glucuronate interconversions, sphin-
golipid metabolism, glutathione metabolism, glycerophospholipid
metabolism, and tyrosine metabolism (Fig. 6(a)). More specifically,
the levels of metabolites involved in a-linolenic acid metabolism
and arachidonic acid metabolism were obviously lower in the
TAC-H group than those of the TAC-L group, which were known
to lower the risk of developing T2DM and improving insulin
responsiveness; these metabolites included a-linolenic acid,
(+/�)12(13)-DiHOME, (+/�)9-hydroxyoctadecadienoic acid (9-
HpODE), arachidonic acid, docosapentaenoic acid, and docosahex-
aenoic acid (Fig. 6(b)). Notably, 9 of 26 metabolites showed a sig-
nificant association with the TAC TCs (Fig. 6(c)). The important
metabolites included arachidonic acid, 9(Z),11(E),13(E)-
octadecatrienoic acid methyl ester, (+/�)12(13)-DiHOME, 16-
hydroxyhexadecanoic acid, (+/�)9-HpODE, 15(R)-15-methyl pros-
taglandin A2, palmitoleic acid, PC 36:4, and DL-
dipalmitoylphosphatidylcholine.

3.4. Association between metabolic disorders and microbial dysbiosis
in PTDM

To elucidate the potential role of TAC-specific microbiota in
PTDM, we used the correlation network analysis and demonstrated
that the discriminatory microbes were closely intercorrelated
(Fig. 7). Of note, the abundance of the PTDM lowered Paraprevotella
clara was negatively related to the levels of Escherichia coli, Kleb-
siella oxytoca, and Alistipes; the levels of the TAC lowered Bifidobac-
terium, Bifidobacterium longum, Bifidobacterium pseudocatenulatum,
Faecalibaterium prausnitzii, Alistipes, and Alistipes finegoidii were
negatively related to the levels of the Escherichia coli. The results
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indicated that the TAC treatment might disturb some microbes
and then the cascade reaction amplify the response of the whole
intestinal homeostasis. These findings facilitated the role of thera-
peutic target on TAC-altered IM in PTDM.

To assess the association between key discriminatory microbes
and glucose disorders in LT recipients, we integrated the glucose
metabolism-related biochemical parameters and gut microbial
profiles (Fig. 8(a)). According to the heatmaps, distinct microbes
of PTDM were partly associated with glucose metabolism-related
biochemical parameters. In particular, the PTDM enriched
microbes (such as the genus Escherichia and species Escherichia
coli; species Klebsiella oxytoca, which belongs to the phylum Pro-
teobacteria; Bacteroides ovatus, and Prevotella buccae, which belong
to the phylum Bacteroidetes; species Solobacterium moorei, which
belongs to the phylum Firmicutes), and the lowered ones (such
as the species Paraprevotell clara, which belongs to the phylum
Bacteroidetes), were positively or negatively related with the levels
of homeostasis model assessment-insulin resistance (HOMA-IR),
fasting blood glucose (FBG), and insulin, respectively.

Lastly, to assess whether the PTDM-specific microbiota could be
used to classify the PTDM from non-PTDM, we performed binary
logistic regression and generated predictive models. Importantly,
the species Bacteroides plebeius, Paraprevotella clara, phylum Pro-
teobacteria, and unclassified Escherichia species were selected to
establish the predicted models for PTDM (Table S4 in Appendix
A). The Homer–Lemeshow test indicated a good quality of data fit-
ting (Table S5 in Appendix A). By the ROC curves analysis of the
model, the faecal microbiota effectively distinguished patients
with PTDM from non-PTDM (area under the curve (AUC) = 0.845,
95% confidence interval (95% CI): 0.759–0.930, P < 0.001)
(Fig. 8(b)). Notably, the predictive model based on PTDM-specific
microbes and TAC-related microbes showed a better ability to dif-
ferentiate patients with PTDM from non-PTDM (AUC = 0.903, 95%
CI: 0.839–0.968, P = 0) (Fig. 8(c); Tables S6 and S7 in Appendix
A). These results highlighted the importance of the faecal micro-
biota in the diagnosis and treatment of PTDM.
4. Discussion

PTDM remains a risk factor for graft failure and death in SOT
recipients. Here, we first reported the taxonomic and functional
alterations of the human gut microbial communities in LT recipi-
ents with PTDM. More specifically, our study demonstrated the
specific microbial lineages and potential functional metabolites
related to TAC usage and the onset of PTDM in LT recipients. These
findings strengthened the understanding of the role of intestinal
dysbiosis, especially the alterations related to TAC, in PTDM and
provided a novel target for the diagnosis and treatment of patients
with such clinical condition.



Fig. 4. The linkage between TAC dosage and alterations in the intestinal microbiome in LT recipients with PTDM. (a) PCoA score plot based on Bray–Curtis distance matrices.
Each point represents one sample. (b) LEfSe analysis showed the key discriminative biomarkers with LDA score > 3 between groups. (c) LEfSe cladograms representing taxa
enriched in each group. Rings from the inside out represent taxonomic levels from phylum to species. The sizes of the circles indicate the relative abundance of the taxon.
TAC-H, n = 16; TAC-L, n = 29. The relative abundance of the phyla (d) Bacteroidetes, (e) Actinobacteria, and (f) Bacteroidetes, including its main subgroups and association with
TAC TC. Data are expressed as the mean ± SEM or median with 5–95 percentiles. *P < 0.05, **P < 0.01, ***P < 0.001. r: correlation coefficient.

Q. Ling, Y. Han, Y. Ma et al. Engineering 31 (2023) 98–111
Here, we demonstrated that PTDM patients shared similar and
special IM features with classic T2DM patients, including enrich-
ment in the phylum Proteobacteria (such as species Escherichia coli
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and Proteus mirabilis) and decreased levels of the phylum Bac-
teroidetes (such as species Paraprevotella clara). Proteobacteria is
a kind of typical Gram-negative bacteria and comprises several



Fig. 5. Microbial and nutritional metabolites in faecal metabolomics were altered by TAC usage in LT recipients. OPLS-DA plot based on the UPLC�MS/MS data in (a) negative
and (b) positive ion modes. (c) Heatmap of distinct microbial metabolites between the two groups. The pentagrams represent the microbiota-related metabolites. TAC-H,
n = 9; TAC-L, n = 6. MS/MS: tandem MS; PC: phosphatidylcholine; 12(13)-DiHOME: 12(13)-dihydroxy-9Z-octadecenoic acid; 9-HpODE: 9-hydroxyoctadecadienoic acid.
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known human pathogens, such as Escherichia and Proteus, which
have been regarded as common factors in human diseases, includ-
ing metabolic disorders and inflammatory diseases [37]. Therefore,
Proteus mirabilis is an opportunistic pathogen and often causes
infection in immunocompromised hosts [38], such as patients with
diabetes or those who have immunosuppressive agents. Addition-
ally, the level of enriched Proteobacteria was correlated with other
complications (e.g., acute rejection [39] and mortality [40] after
transplantation). Furthermore, our results showed that the levels
of the phylum Proteobacteria and its subtaxa, especially the genus
Escherichia, species Escherichia coli, and species Klebsiella oxytoca,
were positively related to glucose disorders in LT recipients. Con-
sistently, proinflammatory Proteobacteria members flourished
and were implicated in classic T2DM patients [41,42]. Thus, PTDM
shared similar IM features with classic T2DM, especially enrich-
ment in pathogenic Proteobacteria.
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Notably, we found that Paraprevotella clara had decreased levels
while Proteus mirabilis was enriched in PTDM patients, indicating
that the two species might be transplant-associated microbes. Cur-
rently, little is known about the function of Paraprevotella clara, but
it is associated with a good prognosis of liver cirrhosis [43]. Para-
prevotella clara can utilize various sugars and produce acetic acids
[44]; the latter is the smallest SCFA and usually displays metabolic
benefits [45,46]. In our study, the decreased level of Paraprevotella
clara contributed to inhibited pathways in PTDM patients, such as
amino acid biosynthesis (proteinogenic amino acid biosynthesis),
fermentation (pyruvate fermentation to isobutanol) and cofactor,
and carrier and vitamin biosynthesis (coenzyme A biosynthesis).
Lower activation of amino acid biosynthesis was also reported in
patients with T2DM intolerant to metformin [47]. Dysregulation
of coenzyme A biosynthesis presents deleterious consequences,
which have been noted to occur in several pathological conditions,



Fig. 6. The signature metabolites associated with PTDMwere enriched and connected with the dose of TAC in LT recipients. (a) Bubble chart based on the pathways. The sizes
of the circles indicate the impact of the pathway. The color of the circles indicates the –log10p. (b) The alteration of metabolites in the pathway of a-linolenic acid metabolism
and arachidonic acid metabolism. (c) Association between distinct microbial metabolites and TAC TC. *P < 0.05.
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including diabetes and diabetic kidney disease [48,49]. Moreover,
our results showed a negative association between Paraprevotella
clara abundance and the levels of insulin and glucose and
HOMA-IR scores in LT recipients. Additionally, the PTDM patients
presented higher diabetogenic function of the microbiome. The
activated functional pathways included the c-glutamyl cycle
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[50], enterobactin biosynthesis [51], carboxylate degradation, car-
bohydrate biosynthesis (sugar biosynthesis) [52,53], and fatty acid
and lipid biosynthesis, which were consistent with typical T2DM.
Taken together, these findings suggest that we further identified
PTDM-specific microbes, including Proteus mirabilis and Parapre-
votella clara. The alterations in the IM, especially the depletion of



Fig. 7. Distinct microbes interacted with each other in LT recipients. The line thickness represents the value of the Spearman correlation coefficient. Microbes are represented
as circles, and the same color means that microbes belong to the same phylum.
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Paraprevotella clara, in addition to their functional pathways partly
accounted for the disease aetiology of PTDM in LT recipients.

To further explore the potential similarities and differences in
IM between PTDM and T2DM, we made a direct comparison
between PTDM patients and an independent non-transplant
T2DM cohort. We found a significant impact of immunosuppres-
sive agent in the IM of PTDM patients as compared to T2DM
patients. First, PTDM showed dramatically enriched levels of the
phylum Proteobacteria, which is pathogenic and could cause
adverse outcome. In agreement with our findings, patients receiv-
ing SOT followed by immunosuppressive therapy, particularly
mycophenolate mofetil, led to a consistent increase in Proteobacte-
ria [15]. Second, PTDM presented sharply decreased levels of Ver-
rucomicrobia and Firmicutes but an increased level of
Bacteroidetes, which was exactly in consistent with the TAC-
induced IM feature in our previously treated mice with TAC
[11,17]. Therefore, besides the common diabetic IM feature, the
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IM of PTDM was greatly impacted by immunosuppressive agent
such as TAC as compared to that of T2DM.

Since TAC administration was implicated in the intestinal dys-
biosis of liver recipients and may be associated with IM feature
of PTDM, we further evaluated the correlation between IM and
TAC. Interestingly, the levels of potential beneficial bacteria
decreased as the TAC concentration increased. TAC, as the main
immunosuppressant, was regarded as a risk factor for PTDM
[54,55]. Previous animal studies showed that the gut microbiome
tended to be influenced by TAC [56,57] and further participated
in glucose disorders [11,16,58]. Our findings supported the nega-
tive association between TAC use and potential beneficial species
(Bifidobacterium longum, Bifidobacterium pseudocatenulatum, Alis-
tipes finegoldii, and Faecalibacterium prausnitzii) in liver recipients.
Generally, Bifidobacterium elicits host health benefits and is widely
used as a probiotic [59], of which Bifidobacterium longum and Bifi-
dobacterium pseudocatenulatum contribute to the metabolism of



Fig. 8. Distinct microbiota connected with glucose metabolic parameters in LT recipients. (a) Heatmap of correlation analysis between the microbiota and glucose metabolic
parameters. (b) ROC curve of the model in discriminating PTDM from non-PTDM based on the PTDM-specific microbiota. (c) ROC curve of the model in discriminating PTDM
from non-PTDM based on the PTDM-specific and TAC-altered microbiota. HOMA-IR = fasting glucose (mmol∙L–1) � fasting insulin (mU∙L–1)/22.5. *P < 0.05. TG: triglycerides;
ALT: alanine aminotransferase; AST: aspartate aminotransferase.
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dietary carbohydrates [60]. Bifidobacterium abundance was
reduced in mice with diabetes induced by another immunosup-
pressant, rapamycin [61]. Moreover, the abundance of Faecalibac-
terium prausnitzii, as a candidate for next-generation probiotics
[62], decreased in T2DM patients [41]. In addition, decreased Alis-
tipes abundance showed causally negative effects on blood triglyc-
erides in humans [63], and contributed to fibrotic conditions in
liver [64], the main organ of glucose metabolism. Our results sup-
ported that the reduction in the levels of beneficial bacteria medi-
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ated by TAC affects other commensal microbes in transplant
recipients. Additionally, a panel of key microbes, including TAC-
altered Bifidobacteriales, could effectively discriminate patients
with and without PTDM. That is, TAC altered the gut microbiome,
which could be a plausible contributor to the development of
PTDM-specific intestinal dysbiosis in liver recipients and further
potentially influence the physiological phenotype of diabetes.

Furthermore, metabolomics analysis of the study confirmed the
metabolic functional alterations of the microbiota mediated by
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TAC. The levels of these metabolites involved in pathways of a-
linolenic acid or arachidonic acid metabolism, including arachi-
donic acid and 12(13)-DiHOME, were decreased in our transplant
recipients with higher TAC TCs. Consistently, in T2DM patients,
plasma 12(13)-DiHOME levels were negatively related to glycosy-
lated haemoglobin levels (HbA1c, an indicator of glucose levels)
and insulin sensitivity [65]. 12(13)-DiHOME has been identified
as a promising therapeutic target for metabolic diseases, including
diabetes [65,66]. Additionally, it could increase skeletal muscle
fatty acid oxidation, which was associated with the improvement
of glucose tolerance [67]. Moreover, a-linolenic acid metabolism
was involved in the synthesis of unsaturated fatty acids such as
docosahexaenoic acid, which could exert anti-inflammatory prop-
erties [68] and attenuate hyperglycemia via microbiota–gut–orga
ns axis in mice [69]. Arachidonic acid (metabolism) is involved in
the process of inflammation [70], and the latter is an important
pathogenic pathway in the development of diabetes and its com-
plications [71]. Additionally, the metabolites kynurenic acid [72],
arachidonic acid [73], docosahexaenoic acid [69], (+/�)12(13)-
DiHOME [74], indole-3-lactic acid [72], b-muricholic acid [75],
and 5-methoxysalicylic acid could be regulated or metabolized
by the microbiota. The above microbial functional alterations of
inflammatory or nutrient-related metabolites associated with
TAC use might partly explain the potential pathogenesis of PTDM.

This study has the limitations. First, the validation study sample
was small. Our findings need to be verified in some large cohorts
even with different races. Second, the patient characteristics
between PTDM and T2DM had differences due to the natural his-
tory of diseases, which could be further investigated. In addition,
although we revealed a PTDM-specific IM and metabolic feature,
further well-designed experiment is in need to clarify the cause-
effect relationships among IM, TAC, and PTDM.

In summary, this integrated metagenomics and metabolomics
study firstly characterized the gut microbiome and metabolome
in human LT recipients with PTDM and demonstrated that the
altered gut microbial features in LT recipients were closely corre-
lated with the serum concentration of TAC. Additionally, the preva-
lence of certain Proteobacteria, and the decreased abundance of
beneficial microbes (e.g., Bifidobacterium and Faecalibacterium), in
addition to disturbed energy metabolism in LT recipients may
affect prognosis. As we previously showed a negative impact of
antibiotics on TAC-induced glucose disorders [11], we hypothesize
a beneficial role of prebiotics and probiotics in the treatment of
PTDM. Although it is difficult to unequivocally draw the causal
association between specific microbes and PTDM occurrence in
LT recipients based on current results, the findings of the study
supported a role of the gut microbiota in PTDM patients, which
could potentially serve as the signature and adjuvant preventive
and therapeutic target for glucose disorders in clinical recipients.
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