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The potential for reducing greenhouse gas (GHG) emissions and energy consumption in wastewater
treatment can be realized through intelligent control, with machine learning (ML) and multimodality
emerging as a promising solution. Here, we introduce an ML technique based on multimodal strategies,
focusing specifically on intelligent aeration control in wastewater treatment plants (WWTPs). The gener-
alization of the multimodal strategy is demonstrated on eight ML models. The results demonstrate that
this multimodal strategy significantly enhances model indicators for ML in environmental science and
the efficiency of aeration control, exhibiting exceptional performance and interpretability. Integrating
random forest with visual models achieves the highest accuracy in forecasting aeration quantity in mul-
timodal models, with a mean absolute percentage error of 4.4% and a coefficient of determination of
0.948. Practical testing in a full-scale plant reveals that the multimodal model can reduce operation costs
by 19.8% compared to traditional fuzzy control methods. The potential application of these strategies in
critical water science domains is discussed. To foster accessibility and promote widespread adoption, the
multimodal ML models are freely available on GitHub, thereby eliminating technical barriers and encour-
aging the application of artificial intelligence in urban wastewater treatment.

� 2024 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction ongoing surge in energy consumption, individuals are increasingly
To address the global energy crisis and mitigate climate change,
a collaborative approach involving multiple industries is needed to
reduce greenhouse gas (GHG) emissions [1–3]. Current reports
suggest that the worldwide treatment of approximately
188.1 � 109m3 per year of wastewater equates to approximately
1% of total energy consumption and contributes 0.77 � 109 t
CO2-equivalent GHG emissions, or approximately 1.57% of global
GHG emissions (49 � 109 t CO2-equivalent) [4–6]. Notably, the
wastewater treatment industry has gained increasing recognition
for its potential for carbon reduction [7,8]. This industry is deeply
intertwined with societal development and human life, as it puri-
fies wastewater and replenishes valuable water resources. Notably,
GHG emissions from wastewater treatment systems play a signif-
icant role in global GHG emissions across all countries. With the
recognizing the significance of energy conservation and GHG emis-
sions reduction [9]. Consequently, a multitude of approaches have
emerged, including different energy allocation methods and intel-
ligent low-carbon technologies. These advancements offer valuable
insights into reducing carbon emissions in wastewater treatment
systems [10–12].

As a relatively large emitter of GHG in the world, China critically
shapes global environmental trajectories with its carbon reduction
and energy conservation efforts. In 2019, China’s municipal
wastewater treatment industry emitted a total of 5.3 million tons
of CO2-equivalent, with the national average wastewater GHG
intensity escalating by 17.2% from 2009 to 2019 [13]. China’s swift
industrial and economic ascension presents formidable challenges
in its quest for carbon neutrality [14]. Unexpected carbon emis-
sions have imposed significant constraints on achieving carbon
neutrality objectives for wastewater treatment plants (WWTPs).
However, striving for carbon neutrality in wastewater systems also
uncovers novel pathways for sustainable environmental develop-
ment [15,16]. Globally, nations are embracing intelligent strategies
astew-
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to simultaneously tackle water pollution and target carbon neu-
trality in wastewater treatment systems [17]. Consequently,
achieving low-carbon operations and implementing intelligent
control mechanisms have emerged as pivotal areas of focus for
the efficient operation of WWTPs.

Among the different processes of WWTPs, the biochemical aera-
tion process significantly contributes to both energy consumption
and carbon emissions [18], accounting for approximately 75% of
energy consumption and subsequently affecting the carbon emis-
sions of WWTPs [19,20]. However, achieving precise aeration con-
trol remains a considerable challenge. Implementing intelligent
control in this process is difficult due to the complex, slow, and dis-
organized dynamics of the underlying biochemical reactions
[21,22]. Althoughactivated sludgemodels, themost prevalent tradi-
tional mechanistic models in WWTPs, can offer relatively reliable
data, their practical application is limited. This limitationarises from
their dependency on complexmodel parameters and computational
constraints [23]. The current aeration control method, which is
based on biochemical mechanisms, is hindered by complex param-
eter settings and cannot efficiently operate wastewater plants in
accordance with intelligent control strategies. Consequently, accu-
rate prediction and real-time control of the aeration rate are crucial
for WWTPs to work toward achieving carbon neutrality.

The rapid advancement of artificial intelligence (AI) has ushered
in a new era of simplified and effective solutions for tackling inter-
disciplinary scientific challenges [24–26]. The widespread adop-
tion and assistance of AI have led to a surge in potential
applications in wastewater treatment [27,28]. These applications
span various areas, including water quality testing, identification
of emerging contaminants, and resource recovery [29–31]. Previ-
ous research has demonstrated the effectiveness of AI technology
for predicting and controlling aeration in biochemical wastewater
treatment (Table 1) [32–46].

The potential for achieving significant reductions in GHG emis-
sions and energy consumption through intelligent control of
wastewater treatment is immense. However, previous studies have
often relied on single-category machine learning (ML) models,
including classic ML, deep learning, and reinforcement learning,
to directly predict air demand or optimize parameters in the aera-
tion process. Unfortunately, these studies often overlook aspects of
interpretability and generalizability. Moreover, as the generation
of environmental data continues to escalate in speed, quantity,
and complexity, a wealth of information across diverse data for-
mats such as tables, images, and videos remains unexploited. Pro-
gress in constructing multimodal models for intelligent control of
the wastewater biochemical treatment process has been scant. In
addition, previous research has largely focused on integrating
mechanistic models with single-category ML models, with little
attention to models from diverse categories, hindering model gen-
Table 1
Previous research on the role of AI techniques in predicting and controlling biochemical w

Model Ad

Reinforcement learning O
Multivariate adaptive regression O
Artificial neural network En
Linear stochastic Eq
Long short-term memory Re
Quantile regression neural network St
Coupling convolutional neural network and recurrent neural network Ef
Artificial neural network Ad
Artificial neural network Re
Ensemble learning Si
K-Nearest Neighbor Ae
Machine learning-mechanistic transfer models Si
Dynamic supervised machine-learning Co
Reinforcement learning control strategies D
Random forest W
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eralization. The persistent challenge of the ‘‘black box” effect fur-
ther hampers model interpretability, limiting our understanding
of the underlying environmental principles. Therefore, this study
pioneers an approach that deploys multimodal ML, merging classi-
cal ML models with visual models, with a specific focus on the
intelligent control of the aeration process in WWTPs. The founda-
tional steps and principles of these multimodal ML models are
introduced, and the generalizability and interpretability of this
multimodal approach in WWTPs are discussed. Furthermore, the
performance of the multimodal models in intelligently controlling
air demand is validated through application in a full-scale WWTP,
affirming their effectiveness in energy conservation and consump-
tion reduction.
2. Materials and methods

2.1. Description of the data source

The raw data of this study are obtained from a full-scale
WWTP in Shandong Province, China. This plant employs a modified
anaerobic–anoxic–oxic (A2O) process for biological nutrient
removal. Real-time measurements of wastewater characteristics,
including ammonium (NH4

+-N, mg∙L�1), nitrate (NO3
�-N, mg∙L�1),

chemical oxygen demand (COD, mg∙L�1), and dissolved oxygen
(DO, mg∙L�1), were taken using an autosampler (Integrated Quality
Sensor Net system, Wissenschaftlich-Technische Werkstätten;
Xylem Inc., Germany). Temperature, flow rate, COD, NH4

+-N and
total nitrogen (TN) of the influent were obtained at the different
locations of the WWTP (Table S1 in Appendix A). The data were
automatically collected at 15-minute intervals using the supervi-
sory control and data acquisition (SCADA) system, resulting in a
total of 8832 sets of data over a 92-day period from July 1, 2022,
to September 30, 2022. Simultaneously, video files documenting
the aerobic tank surface aeration were captured and saved in
Mobile Pentium 4 (MP4) format. These segmented video clips were
further converted into Joint Picture Group (JPG) format images and
seamlessly merged with the structured data based on the
corresponding time index.

The dataset, comprising 8064 samples, is used for model devel-
opment through training and validation, with the remaining 768
samples employed to test model performance. The dataset utilized
in this study comprises 16 features, encompassing temperature,
flow rate, water quality, and other variables. The air demand is
designated as the feature that needs to be controlled. As a result
of the continuous motion of the data acquisition unit, the picture
data originate from various aeration locations within the aerobic
tank, leading to significant variations in bubble location, size, num-
ber, and shape.
astewater treatment.

vantage Reference

ptimize dissolved oxygen injection [32]
ptimize air injection and water quality [33]
ergy conservation and control of risk of non-compliance [34]
uipment performance upgrades [35]
duced energy costs [36]
able operation and control of water quality [37]
ficiency and stability [38]
justment of removal rate [39]
duction of energy expenditures [40]
mulating aerobic granular sludge [41]
ration efficiency [42]
gnificant energy savings [43]
st savings and automation [44]
ata management and integration processes [45]
ithout manual calibration [46]
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2.2. Data preprocessing

The performance and characteristics of the dataset are illus-
trated in Table S1, including minimum, maximum, mean, standard
deviation, and 25%, 50%, and 75% quantile values for all indicators.
The indicators reveal subtle but distinct time series patterns. Influ-
ent parameters exhibit broad variability, with influent COD ranging
from 84 to 295 mg∙L�1 (with an average of (162.8 ± 48.9) mg∙L�1),
TN ranging from 17.57 to 49.70 mg∙L�1 (with an average of (33.3
0 ± 8.11) mg∙L�1), and NH4

+-N ranging from 11.55 to 40.78 mg∙L�1

(with an average of (25.68 ± 6.48) mg∙L�1). In contrast, effluent
parameters demonstrate a uniform distribution with slight aver-
age, variance, and offset variations. Overall, noticeable fluctuations
in water quality indicators are observed, posing expected chal-
lenges during model training.

To ensure data reliability and appropriateness for analysis, pre-
processing and cleaning procedures are undertaken. Missing values
are handled using data interpolation techniques, with the column’s
average value used to fill in absent data. Several filling methods are
examined, including the use of values preceding or following miss-
ing positions, a fixed value of 0, or a fixed value of the mean, with
the most advantageous results achieved using mean filling. After
substituting the missing values and analyzing the distribution of
the numerical data, outliers that could affect model accuracy are
identified. These outliers are detected and managed using appro-
priate scaling methods. Ultimately, the data undergo a logarithmic
transformation to enhance the speed of training convergence.

2.3. Base ML model

To verify the generality of the multimodal approach and charac-
terize different ML models, it is essential to select a diverse array of
ML models for this investigation. As such, eight ML models are
meticulously chosen as the base models for this study (Fig. 1). This
broad selection aims to ensure robust and varied testing of the
adaptability across different algorithmic structures. This diverse
set of models facilitates a comprehensive evaluation of their per-
formance and unique characteristics. These eight base models are
categorized into three groups.

First, three classical MLmodels, linear regression (LIN), Huber k-
nearest neighbors (KNN), and support vector machines (SVMs), are
incorporated. Linear regression, a widely implemented ML algo-
rithm, aims to identify the optimal function by minimizing the
sum of squared errors (Fig. 1(a)) [47]. KNN classifies a point based
on the categories of its k nearest neighbors, subsequently perform-
ing regression for the prediction (Fig. 1(b)). SVM seeks a hyper-
plane that separates categories, maximizing the margin between
the hyperplane and the training samples (Fig. 1(c)). A more
detailed explanation of these ML models can be found in Section S1
in Appendix A.

The study also includes two ensemble learning models: gradi-
ent random forest (RF) and light gradient boosting machine
(LGBM). Ensemble learning models utilize diverse strategies to
integrate submodels. RF utilizes the idea of bagging, where a sub-
training set for each base model is formed by randomly sampling
from the original training set (Fig. 1(e)). The training process of
boosting-based ensemble learning models such as LGBM follows
a ladder-shaped approach. When a specific data point is misclassi-
fied in one iteration, it is assigned a higher weight (Fig. 1(f)). A
more detailed explanation of ensemble learning models can be
found in Section S2 in Appendix A.

Finally, three kinds of deep learning are utilized: deep neural
networks (DNNs), recurrent neural networks (RNNs), and long
short-term memory (LSTM). The DNN demonstrates extensive cov-
erage and exceptional adaptability due to its networks comprising
numerous layers of substantial width (Fig. 1(d)). RNN and LSTM are
3

deep learning methods specifically designed for handling time ser-
ies data. RNN excels in short-term memory (Fig. 1(g)), while LSTM
is better for long-term memory (Fig. 1(h)). A more detailed expla-
nation of deep learning models can be found in Section S3 in
Appendix A.

2.4. Visual model

Visual models are widely used in the field of environmental
science [48–50]. The emergence of deep learning, particularly con-
volutional neural networks (CNNs), has profoundly transformed
traditional computer vision. Typically, a CNN comprises convolu-
tional, pooling, and fully connected layers, which together form
its basic components [51]. Convolutional layers distill feature maps
encapsulating the multidimensional characteristics of an image,
while pooling layers reduce the dimensionality of these feature
maps by discarding extraneous information, thereby accelerating
model convergence and minimizing the parameter count [52,53].
A prominent model based on CNNs is You Only Look Once (YOLO),
which has become a leading model in computer vision due to its
real-time training capabilities, fast training speed, and strong gen-
eralization feature learning ability [54,55]. The visual model frame-
work utilized in this study extends the backbone network of YOLO,
incorporating adaptations to meet the specific requirements of the
wastewater treatment system.

The visual model consists of three distinct components. The
input module first normalizes images of varying sizes into a
640 pixels � 640 pixels � 3 pixels format, encoding the RedGreen-
Blue (RGB) channels. Next, the backbone network extracts pivotal
features from the input images, specifically focusing on bubble
features associated with aeration. Finally, the detection head mod-
ule facilitates the detection and classification of objects at three
scales—small, medium, and large. This module differentiates
bubbles from other solids, suspended matter, and so on. An
accompanying diagram provides further insights into the individ-
ual modules (Fig. 1(i)). At its core lies the module which includes
a CONV, a BN and a SILU (CBS), which consists of convolutional
layers(CONV), batch normalization (BN), and the activation
function (SILU). Additional modules are built or combined on the
foundation provided by the CBS module. The numerical values
indicating multiplication next to each module in the diagram
represent the image size at each stage, illustrating the transforma-
tions from 640 pixels � 640 pixels � 3 pixels to subsequent stages.

2.5. Multimodal model

Multimodal learning integrates multiple types of data and facil-
itates the extraction of comprehensive features by leveraging the
diverse information within each modality [56]. Data partitioning
in multimodal learning involves a more fine-grained concept of
modality, where different modalities can coexist within the same
medium. Modalities encompass a range of elements, including
ideographic symbols; semantic representations such as word vec-
tors or knowledge graphs; structured and unstructured data units;
and mathematical descriptions such as formulas, logic symbols,
function diagrams, and explanatory texts.

The complementarity and redundancy of multiple modalities
enable the representation and summarization of complex informa-
tion. Nevertheless, the heterogeneity of multimodal data presents
challenges in constructing effective representations. Tabular data
directly reflect information, but image and video data are repre-
sented as signals. Single-modal representation aims to convert
information into numerical vectors that can be processed by
computers or abstracted into higher-level feature vectors. In
contrast, multimodal representation aims to acquire more infor-
mative and discriminative feature representations by leveraging
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Fig. 2. Flowchart of multimodal strategy for intelligent aeration control of
wastewater treatment. The data is categorized and preprocessed, and then enters
under different judgments to choose whether to use the visual model feedback
calibration or not, producing different prediction. MAPE: mean absolute percentage
error; RMSE: relative root mean square error; yt: true value ; yp: predict value ; R2:
coefficient of determination.
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the complementarity among different modalities and eliminating
redundancy between them. The pursuit of improved feature repre-
sentations in multimodal learning is motivated by the desire to
effectively capture the rich and varied information encapsulated
within diverse data types.

Fusion plays a crucial and challenging role in multimodal learn-
ing, where information from multiple modalities contributes to
predictive tasks collaboratively. Each modality can have unique
predictive capabilities, noise patterns, and the potential for data
loss in at least one modality. The multimodal strategy proposed
in this study employs fusion. As shown in Fig. 2, this study pro-
poses an interrelated multimodal strategy that combines visual
models with classical ML models.

Algorithm 1 shows the pseudocode for the multimodal strategy.
In the data collection phase, after collecting data from multiple
modalities, meticulous steps such as data cleaning, reduction and
integration are performed. The processed data are simultaneously
entered into the base ML model and the visual model to obtain
the results. The prediction of the base ML model is yb, and the pre-
diction of the visual model is m, which implies the calibration
parameters of feedback. This m is 0 within the threshold range,
which means the calibration role of the visual model is not enabled
Fig. 1. Schematic diagramof theprinciple of thebasemodel andvisualmodel. (a) Linear reg
value; (b) K-nearest neighbor, x: feature; y: label; k: number of recent values; (c) support
neural network; (e) random forest; (f) light gradient boostingmachine; (g) recurrent neura
xtþ1: feature; (h) long short-termmemory,Ct�1,Ct:memory cell; x, xt: feature; It: input gate
(i) visualmodel framework, the visualmodel framework is structured into three distinct co
standardized format, encoding the RedGreenBlue (RGB) channels. The top left is the backbo
input images. The top right is the headmodule that facilitates object detection and classific
submodule. All values are in pixel points. The numerical values denoting multiplication a
convolutional layer; BN: batch normalization; SILU: the activation function; Sigmod: sigm
MP-1, SPPCSPC, UPSample, ELAN-W, MP-2, REP, and MaxPool: the structure of these mod
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and the results of the base ML model are directly used as the final
prediction. The threshold a is designed to be a variable parameter
during the code development phase. The threshold used is 91.5
m3∙h�1, which is 5-fold the standard deviation of instantaneous
oxic tank flow rate (Foxi). When m � a, the predictions can be out-
put directly without further reliance on the multimodal model.
However, if m > a, the coupling parameters from the visual model
need to be carefully evaluated. Model performance is evaluated by
three indicators: relative root mean square error (RMSE), mean
absolute percentage error (MAPE), and coefficient of determination
(R2) (Section S4 in Appendix A). If any metrics are optimized, the
multimodal predicted value ym = yb +m is output as the final value;
otherwise, the final value is yb.

Algorithm 1

Multimodal strategy pseudocode.
re
ve
l ne
;H
mp
ne
at
dja
oid
ule
Input:
ssion, x: featu
ctor machine
twork, yt�1, y
t�1,Ht: hidde
onents. The i
modulewhic
ion across dif
cent to each
function; CB
s are shown
Base model ? LIN, SVM, KNN, RF, LGBM, ANN, RNN,
LSTM, and so forth

Vision model ? YOLO, SSD, DETR, FCOS,
EfficientDet, Faster R-CNN, and so forth

Multimodal environmental dataset

Threshold a ? Customized or standard deviation
about important feature
Output:
 Predict value

function Split (multimodal environmental dataset)
Feature and true value yt  Multimodal
environmental dataset
Structured-data and image  feature

function BaseTrain (base model, structured-data,
yt)
Prediction yb  Base model (structured
feature, yt)

function VisionTrain (vision model, image, yt)
Feedback m  Vision model (image, yt)

function MulStrategy (yb, m, yt)
if m > a then

Evaluation A MAPE(yb + m, yt) < MAPE

(yb, yt)

Evaluation B  RMSE(yb + m, yt) < RMSE

(yb, yt)

Evaluation C  R2(yb + m, yt) > R2(yb, yt)

if Evaluation A or Evaluation B or

Evaluation C then

Predict value  yb + m
else if Predict value  yb

end if
if m � a then Predict value  yb

end if

return Predict value
ANN: artificial neural network; SSD: Single Shot MultiBox Detector;
DETR: DEtection TRansformer; FCOS: Fully Convolutional One-Stage
Object Detection. SSD, DETR, FCOS, EfficientDet, and Faster R-CNN
are some commonly used computer vision models.
re; y: label; argmin:minimize; bw:weights;bb: bia;yi: value; byi : average
s, x, y: the axes of the Cartesian coordinate system; (d) deep artificial

t , ytþ1: label;Ht�1,Ht ,Htþ1: hidden state;W:weightingmatrix; xt�1, xt ,
n state; tanh: activation function; Ft: forget gate;r: sigmoid function;
nputmodule in the lower left transforms images of varying sizes into a
h assumes the responsibility of extracting essential features from the
ferent scales. The bottom right provides specific construction for each
submodule within the diagram reflect the current image size. CONV:
S: a CONV, a BN, and a SILU; CBM: a CONV, a BN, and a Sigmod; ELAN,
on the diagram; cat: weight splicing; add: weight add up .
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2.6. Applicability and performance tests

The applicability of the developed multimodal framework
model was assessed by evaluating the performance of aeration
control strategies implemented at the same full-scale WWTPs
(China). The secondary treatment processes at this WWTP were
arranged in parallel pairs. Half of the processes employed the orig-
inal aeration method, while the other half used the multimodal
aeration method for control. This operational strategy was imple-
mented for 29 days to comprehensively assess the practicality
and effectiveness of the multimodal aeration approach. Through-
out the 29-day data collection period, the influent COD exhibited
fluctuations ranging from 103 to 227 mg∙L�1, and the TN levels var-
ied between 15 and 56 mg∙L�1. The dissolved oxygen levels in the
five regions of the modified A2O process (Fig. S1 in Appendix A)
were carefully regulated within specific ranges: (0.05 ± 0.02), (0.
15 ± 0.05), (1.5 ± 0.5), (0.15 ± 0.05), and (1.5 ± 0.5) mg∙L�1.
Fig. 3. Feature values of structured input parameters for the multi-modal ML in an
actual WWTP. Each column of feature value is normalized. Fi: instantaneous
influent flow rate; Ti: influent temperature; CODi: influent chemical oxygen
demand; TNi: influent total nitrogen; NH4

+-Ni: influent ammonia; Feff: instantaneous
effluent flow rate; Teff: effluent temperature; CODeff: effluent chemical oxygen
demand ; TNeff: effluent total nitrogen; NH4

+-Neff: effluent ammonia; MLSSoxi: oxic
tank mixed liquor suspended solids ; NH4

+-Noxi: oxic tank ammonia ; NO3
�- Noxi: oxic

tank nitrate ; DOano: anaerobic tank dissolved oxygen ; DOeff: effluent dissolved
oxygen.
3. Results and discussion

3.1. Preliminary analysis of variables of investigated WWTPs

For a better understanding of the distribution of the datasets,
the original indicators are normalized and demonstrated in
Fig. 3. Notably, distinct variations emerge in the distribution of
these different normalized indicators of the WWTPs. The original
feature value is y, the normalized feature value of

y�min feature columnð Þ
max feature columnð Þ�min feature columnð Þ. While most feature columns tend

to cluster around 0.25–0.75, the mean and mode positions among
these columns differ significantly. Intriguingly, no apparent tem-
poral correspondence between the changing trends of feature
and label columns is found. This raises a challenge in deciphering
the environmental significance of the data distribution, thereby
underscoring the need for robust model interpretability.

The performance metrics MAPE, RMSE, and R2 for all eight algo-
rithms under two scenarios (base ML models and multimodal ML
models) are presented in Fig. 4. Notably, the simulated values of
the base ML models fail to align satisfactorily with the actual val-
ues. All the base ML models consistently exhibit a MAPE ranging
from approximately 11.6% to 15.2% and an RMSE ranging from
1908 to 2242, with R2 values consistently below 0.301. These find-
ings indicate a significant discrepancy between the predicted and
actual results using the base ML model. Among the specific base
models, the DNN achieves the lowest MAPE value of 11.6%, while
the RNN attains the lowest RMSE of 1908 and the highest R2 value
of 0.301. These results indicate that the base ML model has limited
generalizability and interpretability for air demand prediction,
thereby indicating an avenue for improvement to enhance preci-
sion in aeration control. The visualization results of the training
process show that RF, RNN, and LSTM have excellent learning abil-
ity, and the prediction results are very close to the true values
(Fig. S2 in Appendix A). Nevertheless, the MAPE in the test set does
not show a significant difference, with values between 11.7% and
12.7% (Fig. 4). Conversely, LIN and KNN underperform in the train-
ing process, with their respective MAPE values in the test set
reaching only 13.3% and 13.7%, respectively. These phenomena
substantiate the conjecture that base ML models predict aeration
with poor interpretability.

3.2. Multimodal ML model development and performance

The evaluation of the performance of the multimodal ML mod-
els on the test dataset is presented in Figs. 4(a)–(h). Incorporating
the visual model significantly enhances the performance of the
multimodal model when compared to the base ML models. All
6

multimodal prediction curves are closer to the true situation than
their corresponding base model curves. Fig. 4(i) illustrates that
LIN-M, KNN-M, SVM-M, DNN-M, and RNN-M achieve MAPE values
below 12% and exhibit improved R2 values of 0.090, 0.344, 0.484,
0.468, and 0.424, respectively. Moreover, RF-M, LGBM-M, and
LSTM-M demonstrate further improvements in their R2 values,
achieving 0.894, 0.737, and 0.606, respectively. The notable
improvement in R2 values provides a reliable foundation for inter-
preting the models.

The key feature information regarding the training of the visual
model is displayed in Fig. S3 in Appendix A. In both the training
and validation sets, the box loss remains stable at 0.03 and 0.06,
respectively. Likewise, the objectivity loss remains stable at 0.10
in the training set and 0.02 in the validation set. The mean average
precision (mAP) represents the average precision calculated for all
categories across various confidence levels. mAP@0.5 denotes the
average mAP with a confidence threshold greater than 0.5, steadily
converging at 0.8. mAP@0.5:0.95 represents the average mAP
across different confidence levels from 0.5 to 0.95, illustrating
stable convergence at 0.6. Due to the multimodal nature of real-
world data, multimodal learning offers a more robust theoretical
foundation, albeit with associated complex training challenges



Fig. 4. (a–h) Comparison of base model and multimodal ML model verification results. Black line: the true value; green line: base ML model predict value; red line:
multimodal ML model predict value. The panels a–h represent the differences between the eight base models. (i) Training performance comparison of multimodal and base
ML models. The indicators for comparison are MAPE, RMSE, and R2 from top to bottom. The color bar on the right indicates the relative size of the data, with blue to red
indicating the size of the data from small to large. The smaller the MAPE and RMSE, the larger the R2, and the stronger the performance of the model. M: multimodal.
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[57,58]. Multimodal learning facilitates a comprehensive under-
standing of data, emphasizing the algorithms learned from multi-
modal data [59,60]. Humans can perceive others or objects using
both visual and auditory modalities. Multimodal deep learning
aspires to imbue computers with similar capabilities, enabling
models to process inputs from multiple modalities concurrently
[61,62]. This elucidates the robust convergence and generalization
performance of multimodal models on training datasets, as illus-
trated in Fig. 4(i).
7

Regarding the individual algorithms, significant differences in
improvement magnitude exist among the different base models.
After incorporating the visual model, the improvement in RNN
and LSTM is not substantial, possibly because RNN can learn from
partial instantaneous information through its memory cells [63].
RNN excels in short-term memory, whereas LSTM excels in long-
term memory [64,65]. This is supported by Fig. 4(i), which shows
a notably higher improvement in LSTM compared to RNN. Con-
versely, multimodal models have a significant improvement effect
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on other algorithms. The two ensemble learning algorithms, RF and
LGBM, perform exceptionally well, possibly due to the extraction of
instantaneous information from the visual model, which provides a
better path for subtree classification in tree models [66]. RF utilizes
a sample retrieval method with recycling, facilitating parallel train-
ing of subtrees. In contrast, LGBM relies on altering sample
weights, necessitating sequential training [67,68]. RF outperforms
LGBM primarily because parallel training requires more instanta-
neous temporal information, as observed in Fig. 4(i). Additionally,
the multimodal model significantly enhances the performance of
the remaining four ML methods. RF-M exhibits remarkable predic-
tive effects, achieving an MAPE of 4.4% and an RMSE of 743. Fur-
thermore, R2 reaches 0.894. RF demonstrates reliable accuracy
and clear interpretability, rendering it suitable for intelligent con-
trol of wastewater plants. By visualizing the difference between yb
and ym on RF-M, we find that there is a corrective effect of the mul-
timodal strategy. Comparing Fig. 4(e) and Fig. S4 in Appendix A, the
multimodal strategy reduces the jitter of the anomalies by visual-
izing the corrected values of the model, which enhances the model
accuracy.

3.3. Interpretability analysis

The Shapley Additive Explanation (SHAP) method, an interpre-
tative approach drawing inspiration from game theory, calculates
the SHAP value as the average of a feature’s marginal contribution
across all feature permutations. Essentially, the SHAP method allo-
cates the output value to each feature’s SHAP value, thus quantify-
Fig. 5. Interpretability analysis of multimodal ML models by SHAP. Red corresponds to hi
of distinguishing feature values. (b) Feature dependency of NH4

+-Ni and CODi. (c) Supervis
the sum of SHAP values.
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ing the influence of different features on the final output value
[69–71]. In RF, SHAP interprets the output of each tree and calcu-
lates the average interpretation across all trees to obtain the final
interpretation result [72]. The SHAP values of all indicator features
in the multimodal ML models are shown in Fig. S5 in Appendix A.

In multimodal ML models, the top three features are ammonia
of the influent (NH4

+-Ni), influent chemical oxygen demand (CODi),
and temperature of the influent (Ti) (Fig. 5(a)). The features were
ordered on the vertical axis based on the aggregated SHAP values
for all samples, while the horizontal axis illustrates the distribution
of the impact of a single sample’s SHAP value on the model output.
Each point represents a sample, the sample size is stacked verti-
cally, and the color represents the size of the feature values. The
global importance of the second-ranked CODi is 57.1% relative to
that of NH4

+-Ni, while the last-ranked feature variable has a mere
importance of 1.4%. Compared to other feature indicators, NH4

+-Ni

exhibits tighter variation boundaries. Furthermore, within the
multimodal framework, the coupled visual data display a larger
variability, and the diverse visual picture states correlate more sig-
nificantly with the subtle changes in NH4

+-Ni. Additionally, it
demonstrates that elevated levels of NH4

+-Ni, CODi, and Ti positively
impact the system, whereas high Ti exert a negative influence. This
insight substantiates that variations in influent water quality indi-
cators substantially impact the water quality modeling of WWTPs,
affirming the conjecture made during the data preprocessing stage.

The dependence scatter plot depicted in Fig. 5(b) elucidates the
interplay between the two most consequential factors (NH4

+-Ni and
CODi). Each point corresponds to a sample, with the horizontal axis
gh values, and blue corresponds to low values in all figures. (a) Global interpretation
ed clustering of the validation set samples. Other 9: 9 other features not shown; f(x):
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representing the feature value of NH4
+-Ni, the vertical axis repre-

senting the SHAP value of NH4
+-Ni, and the color representing the

feature value of CODi. At lower concentrations of NH4
+-Ni, the oxy-

gen demand escalates concomitantly with the increase in NH4
+-Ni

concentration. Specifically, at NH4
+-Ni concentrations of

15–20 mg∙L�1, a rise in CODi concentrations accompanies the
increase in NH4

+-Ni concentrations. Notably, when the NH4
+-Ni con-

centration reaches the 30 mg∙L�1 threshold, the oxygen demand
will level off. At this time, the CODi concentration does not increase
linearly with NH4

+-Ni, rendering NH4
+-Ni the determining factor. For

samples with lower NH4
+-Ni, CODi corresponds to a lower SHAP

value for NH4
+-Ni, and CODi has a greater dependence and influence

on NH4
+-Ni. Crucially, the plot reveals that samples with identical

feature values can exhibit disparate SHAP values, implying the
presence of interactions between these features and other
variables.

Supervised clustering and a heatmap are employed to visualize
the underlying substructure of the 768 test samples (Fig. 5(c)). The
horizontal axis is the validation set sample instance, the vertical
axis is the model feature input, and the color bar is the encoded
SHAP value. The gray dotted line is the baseline, and the bar chart
on the right is the global importance of each model feature input. It
visualizes the distribution of features within each sample. Upon
vertically inspecting the arrangement of all samples, the color
block of the initial sample exhibits a prominent red hue. The pre-
ceding sample distribution substantially impacts the model’s effec-
tiveness, accounting for 91.8%. Furthermore, the sum of SHAP
Fig. 6. Application example of the multimodal framework in a full-scale WWTP. The lege
multimodal framework is shown with string-M. (a,b) Evaluate the water quality and sta
COD and TN removal rate. (e) Dynamic changes in dissolved oxygen concentration in effl
aerobic tank. (g) Total and unit cost of the WWTP when using traditional fuzzy control an
fuzzy control and multimodal strategy. Ele-aer: electricity of aeration; Car-ext: methanol
other electricity consumption; CODo: COD of outflow; DOo: DO of outflow; OW: oxygen
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values (f(x)) surpasses the mean line in 95.8% of cases, indicating
their classification as high-quality samples. This finding demon-
strates the relative stability of the multimodal ML models during
the prediction stage, successfully avoiding significant overfitting.
Consequently, this attribute contributes to the superior perfor-
mance of the multimodal ML models.

3.4. Feasibility and practical implications of multimodal learning

Upon validation of the 29 days of data obtained from the full-
scale WWTPs, the multimodal model developed in this study
demonstrates superior performance compared to traditional fuzzy
aeration prediction and control. The utilization of multimodal
effluent leads to a substantial decrease in effluent COD and TN
compared to the fuzzy control. Fig. 6(a) shows that the average
effluent COD decreases by 38.5%, and Fig. 6(b) demonstrates a
26.3% decrease in average effluent TN. The removal rates of COD
and TN indicate the model’s conversion ability, and the multimodal
framework notably improves these rates. Fig. 6(c) illustrates the
maximal COD removal rate of 96.3%, whereas Fig. 6(d) exhibits
the peak TN removal rate of 95.6%. Moreover, the implementation
of the multimodal framework results in a remarkable reduction in
carbon emissions within the WWTPs.

The notable enhancement in crucial indicators can be attributed
to alterations in dissolved oxygen levels in the effluent. Fig. 6(e)
demonstrates an elevation in dissolved oxygen, signifying an
enhanced efficiency of oxygen utilization in the initial stage. The
nd of the original method is shown without string-M, while the legend of using the
bility by the effluent of COD and TN. (c,d) Evaluate conversion ability capability by
uent. (f) The amount of oxygen required to treat a unit volume of wastewater in an
d multimodal strategy. (h) The percentage cost of the WWTP when using traditional
for carbon source; PAC&PAM: polyacrylamide and polyaluminum chloride; Ele-oth:
demand per unit of wastewater.



Fig. 7. The application feasibility and prospect of the multimodal method are provided in WWTPs. (a) Preventing abnormal working conditions. (b) Dispatching of pump
stations for intelligent sludge discharge in equipment. (c) Real-time detection of pipeline networks. (d) Identification of flocculation effect and intelligent dosing.

H.-C. Wang, Y.-Q. Wang, X. Wang et al. Engineering xxx (xxxx) xxx
minimum dissolved oxygen level in the effluent increases from
1.79 to 1.98 mg∙L�1, while the maximum value increases from
2.38 to 2.65 mg∙L�1. The average dissolved oxygen in the effluent
increases by 11.2%, while the maximum increase is 31.3%, equating
to 0.59 mg∙L�1. Supporting evidence is provided in Fig. 6(f), illus-
trating a reduction in the necessary oxygen content for treating
unit wastewater in aerobic tanks. By implementing the multimodal
aeration framework, intelligent control over oxygen supply and
utilization is achieved, thereby optimizing the provision of sub-
strates for carbon and nitrogen removal processes in wastewater
biological treatment. As a result of this optimization, stable efflu-
ent quality and enhanced removal rates are achieved.

The operational expenses of industrial park WWTPs principally
encompass electricity of aeration (Ele-aer), chemical costs, and
other electricity consumption (Ele-oth), such as sludge return
pumps, internal return pumps, and sludge discharge pumps. The
primary chemicals utilized comprise methanol for carbon source
(Car-ext) supplementation and polyacrylamide and polyaluminum
chloride (PAC&PAM) for chemical precipitation. Table S2 in Appen-
dix A delineates the primary cost components of WWTPs and their
corresponding unit costs. Overall, for half of the process employing
the traditional fuzzy control strategy, the treatment cost measures
1.57 CNY for every cubic meter of wastewater. In contrast, for half
of the process units utilizing a multimodal ML control strategy, the
processing cost is significantly curtailed by 19.7% to 1.26 CNY for
every cubic meter of wastewater, as shown in Fig. 6(g). Specifically,
a significant reduction in aeration electricity consumption is
10
achieved, with the multimodal ML model demonstrating a sub-
stantial decrease of 21.1% compared to base ML model operating
conditions. The percentage of wastewater treatment costs also
changes (Fig. 6(h)).

3.5. Perspective

Within the domain of intelligent wastewater treatment control,
the utilization of multimodal learning frameworks extends beyond
aeration, revealing significant environmental implications that
remain unexplored (Fig. 7). The potential applications of multi-
modal methods in industrial WWTPs and broader water systems
are immense. Multimodal ML incorporates diverse forms of envi-
ronmental data, including text, audio, images, and videos, enabling
comprehensive analysis. Importantly, multimodal frameworks
exhibit significant potential and practical feasibility within critical
water science domains.

The efficacy of multimodal frameworks’ optimization solutions
in effectively tackling the identification of abnormal operational
conditions is demonstrated in Fig. 7(a). WWTPs and urban water
systems feature complex parallel configurations of pipeline net-
works. The detection of anomalies in pipeline networks can be fur-
ther improved through the optimization offered by multimodal
frameworks (Fig. 7(c)). Similarly, in scenarios that encompass
sludge treatment, water supply distribution, and pump utilization,
real-time images, and operational data can be utilized to intelli-
gently schedule pump stations (Fig. 7(b)). Furthermore, in
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advanced wastewater treatment and water supply treatment pro-
cesses, intelligent chemical dosing can be accomplished by inte-
grating preset data parameters and employing morphological
recognition of alum flowers (Fig. 7(d)).

Several ideas are proposed for future optimization purposes.
First, it is necessary to validate the practical application of the mul-
timodal approach in other areas of industrial water systems. Sec-
ond, encapsulating these methods into callable third-party
software libraries will simplify the complexity related to multi-
modal modeling. Finally, a number of variables, including hydrau-
lic retention time (HRT), pH, nitrate cycling ratio, and carbon to
nitrogen ratio (C/N), were eliminated during the pretraining phase.
Some of these variables could be addressed by other indicators,
and some had insignificant effects on the model. At the same time,
some indicators should be verified by researchers in the future,
such as influent and effluent phosphorus and microbial fractions.
However, it is crucial to acknowledge that data acquisition and
reliability verification pose significant challenges that can be over-
come through federated learning approaches.
4. Conclusion

This study introduces a novel ML modeling approach that uti-
lizes multimodal learning, applied for the first time in the aeration
process of wastewater treatment. By leveraging the multimodal
framework, the performance and interpretability of eight ML mod-
els are significantly enhanced, leading to a notable reduction in
operational costs and carbon emissions within WWTPs. Among
the diverse categories of models explored, RF-M emerges as the
top-performing model. Moreover, this study thoroughly examines
the feasibility and potential of multimodal methods in tackling
diverse challenges within the field of water science. The primary
source code for replication purposes can be accessed via Section S5
in the Appendix A.
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