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Three-dimensional (3D) printing is a highly automated platform that facilitates material deposition in a
layer-by-layer approach to fabricate pre-defined 3D complex structures on demand. It is a highly promis-
ing technique for the fabrication of personalized medical devices or even patient-specific tissue con-
structs. Each type of 3D printing technique has its unique advantages and limitations, and the
selection of a suitable 3D printing technique is highly dependent on its intended application. In this
review paper, we present and highlight some of the critical processes (printing parameters, build orien-
tation, build location, and support structures), material (batch-to-batch consistency, recycling, protein
adsorption, biocompatibility, and degradation properties), and regulatory considerations (sterility and
mechanical properties) for 3D printing of personalized medical devices. The goal of this review paper
is to provide the readers with a good understanding of the various key considerations (process, material,
and regulatory) in 3D printing, which are critical for the fabrication of improved patient-specific 3D
printed medical devices and tissue constructs.

� 2024 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Motivation

The utilization of three-dimensional (3D) printing technology
for the fabrication of personalized 3D medical devices and tissue
constructs represents a paradigm shift in healthcare, offering a
myriad of possibilities that include replacing the once traditional
one-size-fits-all approach in healthcare with a patient-centric
model that is tailored to the unique physiology and requirements
of each patient. The 3D printed medical devices are physical instru-
ments or tools that can be used to diagnose, treat, or prevent med-
ical conditions which include medical implants [1], surgical models
[2], surgical instruments, and personal protective equipment [3],
whereas the 3D bioprinted tissue constructs can be fabricated
using patients’ cells, are primarily used for repair and reconstruc-
tion of a recipient’s tissue [4–8]. The 3D printing technology pro-
vides a versatile and highly automated platform for the
fabrication of patient-specific 3D medical devices or tissue con-
structs with unprecedented precision and complexity. The key
motivation behind the integration of 3D printing into the medical
field includes the ability to design and fabricate bespoke 3D med-
ical devices, implants, and prosthetics that seamlessly conform to a
patient’s anatomy.

The global market for 3D-printed medical devices is expected to
grow from 2.7 billion USD in the year 2022 to 6.9 billion USD in the
year 2028 at a compound annual growth rate of 17.1% [9]. There is
a high demand for 3D-printed personalized medical devices or tis-
sue constructs due to ➀customization, ➁increased complexity, and
➂print-on-demand ability. Notably, the development and produc-
tion of 3D-printed medical devices and tissue constructs involve
complex considerations related to processes, materials, and regula-
tory requirements. These aspects are crucial for ensuring the
safety, efficacy, and quality of the 3D printed parts and an in-
depth understanding of these key considerations is vital for the
development of safe, effective, and high-quality 3D medical
devices and tissue constructs that meet the requirements of
patients while complying with regulatory guidelines. This review
article aims to highlight and discuss the various key considerations
for the fabrication of 3D personalized medical devices and tissue
constructs in terms of process, material, and regulatory considera-
tions in the subsequent sections.
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2. Publication landscape on 3D printing techniques

There are 7 key 3D printing techniques based on the American
Society for Testing and Materials (ASTM) standard classification
(material extrusion, material jetting, powder bed fusion, vat pho-
topolymerization, binder jetting, directed energy deposition
(DED), and sheet lamination) as shown in Fig. 1(a) and there is
an increasing number of publications on 3D printed medical
devices and tissue constructs over the last decade according to
Web of Science using the following keywords: ‘‘3D printed” +
products – ‘‘medical implants”, ‘‘surgical models”, ‘‘surgical instru-
Fig. 1. (a) There are 7 different types of 3D printing techniques—material extrusion, ma
sheet lamination. (b) Number of publications on 3D printing of medical devices and tissue
(c) both medical devices and tissue constructs, (d) medical devices, and (e) tissue const
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ments”, ‘‘personal protective equipment” or ‘‘tissue constructs”
(Fig. 1(b)). Further analysis on the 3D printing techniques for
fabrication of 3D printed medical devices or tissue constructs
was performed on Web of Science using the following keywords:
‘‘3D printed” + 3D printing technique (➀ material extrusion –

‘‘extrusion,” ➁ material jetting – ‘‘jetting,” ➂ powder bed fusion
– ‘‘selective laser melting,” ‘‘direct melt laser sintering,” ‘‘selective
laser sintering” and ‘‘electron beammelting,”➃ vat photopolymer-
ization – ‘‘stereolithography” and ‘‘digital light processing,”
⑤ ‘‘binder jetting,” ⑥. ‘‘directed energy deposition” and ⑦. ‘‘sheet
terial jetting, powder bed fusion, vat photopolymerization, binder jetting, DED, and
constructs over the last decade. Analysis of 3D printing techniques for fabrication of
ructs.
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lamination”) + medical devices – ‘‘medical implants,” ‘‘surgical
models,” ‘‘surgical instruments,” ‘‘personal protective equipment”
or ‘‘tissue constructs.” Our preliminary results reflect the general
publication landscape for 3D printed medical devices and tissue
constructs; the most used 3D printing technique for fabrication
of medical devices and tissue constructs is material extrusion
(53.98%), followed by powder bed fusion (16.81%), vat photopoly-
merization (16.52%), material jetting (8.85%), binder jetting
(2.36%), directed energy deposition (0.88%), and lastly sheet lami-
nation (0.59%) (Fig. 1(c)). All seven types of 3D printing techniques
can be used for fabrication of 3D printed medical devices—material
extrusion (41.83%), powder bed fusion (22.71%), vat photopoly-
merization (19.92%), material jetting (10.36%), binder jetting
(3.19%), directed energy deposition (1.2%) and sheet lamination
(0.8%) (Fig. 1(d)), whereas only material extrusion (88.64%), vat
photopolymerization (6.82%), and material jetting (4.55%) are suit-
able for fabrication of 3D bioprinted cell-laden tissue constructs
(Fig. 1(e)). It is important to note that further scientometric analy-
ses are required for more detailed and in-depth investigations,
which have been published elsewhere [10]. In the following sec-
tions, a more comprehensive discussion of process considerations,
material considerations, and regulatory considerations of various
3D printing techniques will be presented.
3. Process Considerations

3.1. Different 3D printing processes

3.1.1. Material extrusion
Material extrusion is the most used 3D printing technique, and

it is commonly used for fabrication of 3D printed medical devices
such as prosthetics [11–13], orthopedic implants [14–16], surgical
guides [17–19], surgical models [20–22], customized personal pro-
tective equipment [23,24] and tissue-like constructs (e.g., bone
[25–28], cardiac [29–32] and cartilage [33–35]). Some of the com-
monly used materials include polymers—hydrogels [36–40] or
thermoplastics [41], metals [42,43], and even ceramics [44,45]
(Table 1). In the material extrusion-based process, the material is
selectively extruded through a nozzle or orifice to fabricate com-
plex 3D printed parts in a layer-by-layer deposition approach
[46]. The material extrusion-based process can be categorized into
two broad groups which involve ➀ material melting and deposi-
tion at high temperatures—fused deposition modeling (FDM)/fused
filament fabrication/screw-assisted additive manufacturing
[47,48],➁ pneumatic or mechanical-based material extrusion—di-
rect ink writing, melt electrospinning writing [49–52].

The material melt extrusion-based approach is dependent on
numerous processing parameters which include temperature (noz-
zle, print bed, and chamber), nozzle speed, and slicing thickness
[53–56]. An optimal nozzle temperature (just below the material
decomposition temperature) helps to enhance the weld strength
of 3D printed parts; a study investigated the influence of nozzle
temperature (210–250 �C) on the weld strength of acrylonitrile
butadiene styrene (ABS) filament (has a range of decomposition
temperatures beginning from 360–450 �C [57]) and it reported that
a maximumweld strength was obtained at the highest nozzle tem-
perature (250 �C) [58]. An optimal print bed temperature (depen-
dent on the type of filament) facilitates improved adhesion of 1st
initial printed layer and minimizes the accumulation of thermal
stress within the 3D printed parts [59,60]. The optimal print bed
temperature varies with the type of filament being used; a bed
temperature of 115 �C was used for ABS filament [59], whereas a
bed temperature close to room temperature was used for both neat
polypropylene and glass-reinforced polypropylene [60]. The bed
temperature is usually lower than the nozzle temperature to initi-
3

ate the setting process for material solidification. Furthermore, an
increase in the layer thickness can help to improve the elastic mod-
ulus [61]. The dimensional accuracy of the printed parts in a mate-
rial extrusion-based process is determined by various material-
and process-related parameters such as material shrinkage [62]
and chamber temperature [63]. The surface finishing of the final
3D material-extrusion printed parts can be improved by optimiz-
ing the process parameters [64], the slicing strategy [65,66], the
part build orientation [67,68], and chemical treatment [69,70].
The surface finish, build time, and support structure are considered
guidelines for deciding an optimal part orientation; it helps to min-
imize or eliminate excessive supporting structures and improves
the overall surface finishing [71].

Extrusion-based bioprinting is a 3D printing technology specif-
ically designed for the fabrication of complex 3D tissue constructs
using biological materials such as living cells and biomaterials.
Some important process considerations during hydrogel
extrusion-based bioprinting of tissue constructs include bio-ink
printability [72], shear stress [73,74], and potential nozzle clogging
[75]. The bio-ink printability in extrusion-based printing can be
represented by the loss tangent value (tandÞ—which can be defined
as the ratio of loss modulus (G00) to storage modulus (G0) and print-
ing within a suitable ‘‘printability window” is important for obtain-
ing 3D tissue constructs with good shape fidelity. Next, the cell
viability during the extrusion-based printing process is dependent
on the shear stress experienced by the encapsulated cells within
the extruded bio-inks, which is affected by the bio-ink viscosity,
nozzle geometry, nozzle diameter, and printing pressure. There is
also a potential issue of nozzle clogging when printing cell-laden
bio-inks of high cell concentration using small nozzle diameter
(�100 lm). The optimal viscosity of a printable bio-ink is
within 101–107 mPa∙s [76] and a maximum concentration of
�107 cells�ml�1 (high cell-laden bio-inks may interfere with hydro-
gel formation) [77,78]. The different types of cell-laden bio-inks
used in extrusion-based bioprinting include alginate-based
(5%–8% w/v) [79,80], gelatin-based (5%–10% w/v) [81–86], hyaluro-
nic acid-based (1.5%–2.5% w/v) [87–90], polyethylene glycol
(PEG)-based (20% w/v) [91] and Pluronic F-127 (� 20% w/v)
[92,93]. Furthermore, decellularized extracellular matrix (dECM)
bio-inks derived from various tissues/organs are typically printed
using extrusion-based bioprinting at 1%–4% w/v concentration
[94]. The dECM bio-inks are usually printed at a low temperature
of �15 �C to mitigate pre-gelation and the temperature-
dependent crosslinking occurs at 37 �C.
3.1.2. Powder bed fusion
Powder bed fusion is the 2nd most used 3D printing technique

(16.81%); it can be used for the fabrication of 3D printed medical
devices such as orthopedic implants [95–97], dental implants
[98–100] and surgical instruments [101,102] and a wide variety
of powders (polymers, metals, and ceramics) can be processed
[103–107] (Table 1). During the printing process, thermal energy
is used to selectively fuse regions of a powder bed that are spread
onto the building platform to obtain the 3D finished parts. The
printing commences with orientating a pre-defined 3D
computer-aided design (CAD) model within the build volume
along with its supporting structures under inert conditions, scan-
ning the scan path with a pre-defined combination of printing
parameters, and lastly recoating with a fresh layer of powder par-
ticles [103]. Examples of powder bed fusion processes include: ➀

selective laser melting (SLM),➁ direct melt laser sintering (DMLS),
➂ selective laser sintering (SLS), and ➃ electron beam melting
(EBM) [103,104]. The key difference between SLM and DMLS is
the temperature used to process the powders—the powders are
fully melted at high temperatures in SLM to achieve a molten state,



Table 1
Analysis of different 3D printing techniques for fabrication of medical devices and tissue constructs.

3D printing techniques Process Printing parameters Printing speed and
resolution

Materials Support structures Applications References

Material extrusion Dispensing material in
the form of filaments/
strands through a
nozzle

Temperature, layer
thickness, printing
speed, material-
substrate interaction

Speed:p p p
Resolution:
Dependent on nozzle
size
(200–1200 lm)

Polymers
(ABS, ASA, Nylon 12, PC, PEI/ULTEM, PLA,
TPU, PEEK, and hydrogels)
Metals
(a mixture of metal powder with PLA/ABS,
metallic glasses)
Ceramics
(Zirconia/methylcellulose paste, calcium
silicate/strontium phosphate/polyvinyl
alcohol slurry)

Yes Medical devices
Tissue constructs
(40%–80% cell viability
[261])

[42–45,53–56]

Powder bed fusion Fusing material using
thermal energy from
the laser source

Laser power, powder
recoating, coalescence
and cooling, laser-
powder interaction

Speed:p p
Resolution:
Dependent on beam
spot size, powder size,
scanning speed
(50–100 lm)

Polymers
(Polyamides – PA 11 and PA12,
polystyrene, PCL, PLA, PLLA, and PEEK)
Metals
(Several types of steels, titanium and its
alloys, nickel-based alloys, cobalt–chrome,
silver, and gold)
Ceramics
(Aluminum oxide, titanium oxide, and
calcium hydroxyapatite)

Yes
(Metals and
ceramics)
No
(Polymers)

Medical devices [103–108]

Vat photopolymerization Crosslinking of liquid
photopolymer resin
using light source

Laser power,
irradiation time, resin
viscosity, PIs, reducing
photo-absorbers, laser-
resin interaction

Speed:p p
Resolution:
Dependent on laser
spot size, irradiation
time (20–50 lm)

Polymers
(acrylic/epoxy-based resins, hydrogels)
Metals
(Tungsten carbide/cobalt-based, silver
acrylate/methacrylate-based, and copper-
based resin)
Ceramics
(Alumina-based, silica-based, and
zirconium silicate-based resin)

Yes Medical devices
Tissue constructs
(�80% cell viability
[261])

[136–142]

Material jetting Contactless dispensing
of materials in the form
of droplets (pL or nL)

Ink viscosity, surface
tension, density, nozzle
diameter, particle size,
droplet-substrate
interaction

Speed:p p
Resolution:
Dependent on nozzle
size, droplet-substrate
interaction
(15–30 lm)

Polymers
(Thermoplastics—mixtures of wax and
polymer, hydrogels)
Metals
(Copper, aluminum, tin, and alloys)
Ceramics
(Zirconia, alumina)

Yes Medical devices
Tissue constructs
(> 85% cell viability
[261])

[172–180]

Binder jetting Dispensing binder to
fuse the adjacent
powder particles

Powder flowability,
binder printability,
binder-powder
interaction

Speed:p p
Resolution:
Dependent on nozzle
size, powder size,
droplet-powder
interaction
(30–60 lm)

Polymers
(Starch/plaster-based, poly-methyl
methacrylate)
Metals
(Steel-, nickel-, cobalt-, titanium-,
aluminum-, copper-based alloys)
Ceramics
(Silicon carbide, boron carbide, alumina,
and zirconia)

No Medical devices [221–227]
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whereas the powder surfaces weld together during DMLS at a
lower temperature [105]. The laser-based powder bed fusion pro-
cesses are usually performed in an inert environment, whereas
the electron-based powder bed fusion process is performed within
a vacuum chamber [103]. Furthermore, each layer of powders in
the EBM process is lightly sintered to minimize the build-up of
electrostatic charges and repulsion of powder particles before sub-
sequent scanning over the same toolpath to fuse the sintered pow-
ders. The excessive powders are removed via vacuum and further
post-processing methods such as coating, sintering, or infiltration
are performed.

Some critical process/material parameters for the powder bed
fusion printing approach include energy input, powder recoating,
coalescence, and cooling [108]. The advantages of the powder
bed fusion printing approach include the fabrication of complex
structures with good surface finishing without the need for sup-
porting structures (especially for polymer), whereas the limitations
include low fabrication speed due to slow powder recoating speed
and laser scanning speed. Some recent strategies to achieve 3D
printed parts with improved density and surface finishing at a
higher throughput rate involved mitigating the build-up of thermal
stress and eliminating crack initiation and propagation via a re-
melting approach [109–111] and implementation of multi-laser
scanning to improve the fabrication speed [112–114].
3.1.3. Vat photopolymerization
Vat photopolymerization is the 3rd most used 3D printing tech-

nique (16.52%); it can be used for fabrication of 3D printed medical
devices such as orthodontic devices [115–117], hearing aids [118]
and surgical guides [119–121], and tissue constructs (e.g., bone
[122–125], cartilage [126–128], liver [129–131], and neural tissues
[132–135]). The different materials used in vat photopolymeriza-
tion include polymer resins [136,137], metallic- [138–140], and
even ceramic- [140–142] containing suspensions (Table 1). The
photo-curable resin is selectively crosslinked when a light source
is projected onto the surface to initiate the free-radical photopoly-
merization process to obtain the completed 3D parts [136]. The vat
photopolymerization process can be classified into 2 main groups:
stereolithography (SLA) and digital light processing (DLP) and it
can be further categorized based on the position of the light source
– bottom-up or top-down. The light source is positioned below the
bottom of the vat through a window to crosslink the resin in the
bottom-up SLA printing process, whereas the light source is posi-
tioned directly above the vat and building platform to crosslink
the resin in the top-down SLA printing process. A digital micro-
mirror device (DMD) is commonly used in the DLP process to facil-
itate rapid crosslinking of a single resin layer as compared to a sin-
gle beam spot in SLA, which resulted in significantly faster
fabrication speed for DLP [143]. Notably, an optimal irradiation
duration ensures sufficient macromer conversion to achieve strong
interface bonding at the layer interface while minimizing over-
exposure to prevent undesirable partial polymerization of sur-
rounding resin. A recent study has demonstrated that the optimal
UV exposure time for the fabrication of polydimethylsiloxane
(PMDS) structures with a high aspect ratio was 2.5 s for each
printed layer [144]. A resin with a high molar extinction coefficient
(eÞ would facilitate crosslinking of a smaller voxel volume and mit-
igate over-curing. The light penetration depth can be increased by
decreasing the photo-initiator (PI) concentration or reducing dyes/
photo-absorbers. The addition of a non-reactive dye component or
photo-absorber within the resin improves the printing resolution
as it competes with the PI in light absorption. Some key consider-
ations for the vat photopolymerization process include the laser
source, printing parameters, vat design, resin viscosity, laser-
resin interaction, and formulation of photo-curable resins (biocom-
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patibility, solvent used, and the formation of free-radical by-
products) [136].

Unlike other bioprinting techniques (extrusion-based and
jetting-based bioprinting) that deposit living cells via a nozzle,
vat photopolymerization-based bioprinting uses biocompatible
liquid bio-resins for the fabrication of intricate 3D cell-laden tissue
constructs at high cellular density [145]. Some important process
considerations during vat photopolymerization-based printing of
tissue constructs include the use of suitable laser wavelength
[146,147] and biocompatible PI [148]. It has been reported that
shorter wavelength is more detrimental to the living cells as the
higher amount of energy leads to increased DNA cellular damage.
Furthermore, an ideal PI should be highly hydrophilic (the pres-
ence of more hydrophilic groups decreases the cellular uptake of
PIs and reduces the cytotoxicity effect on living cells) [149,150]
and crosslink at long wavelengths (formation of UV-initiated free
radicals at short wavelengths has the most detrimental effect on
the cell viability) [148]. Significant progress has been made in
the vat photopolymerization-based bioprinting technique and it
is particularly valuable for the fabrication of complex 3D tissue
constructs with high-resolution structures at high cell density.
The different types of bio-inks used in vat photopolymerization-
based bioprinting include alginate-based (5%–8% w/v), gelatin-
based (2.5%–15% w/v) [151–153], and PEG-based (10% w/v) [154].

3.1.4. Material jetting
Material jetting is the 4th most used 3D printing technique

(8.85%), and it can be used for the fabrication of 3D printed medical
devices such as orthodontics devices [155–157], anatomical mod-
els [158–160], and tissue constructs (e.g., alveolar lung [161–
164], retina [165–168], and skin [169–172]) (Table 1). Different
types of printable materials using the material jetting-based sys-
tems include polymers [172–174], metallic- [175–177], and even
ceramic- [178–180] containing suspensions. In the material
jetting-based process, discrete droplets are selectively deposited
onto an underlying substrate surface to fabricate the 3D-printed
part. There are different variants of material jetting-based systems
which include inkjet-based (continuous or drop-on-demand
(DOD)) [181] and electrohydrodynamic jetting [182]. During the
printing process, the printhead moves horizontally to deposit the
functional ink droplets (typically in the picolitre – pL or nanolitre
– nL range). The applied pressure pulse from the actuator over-
comes the surface tension of the ink to eject discrete ink droplets
from the nozzle orifice. The deposited droplets on the substrate
surface would coalesce and crosslink to form the desired shape
in that layer, droplets for the subsequent layer are then deposited
onto the preceding layer to eventually obtain the 3D finished parts.

The printability is influenced by the physical properties of ink
(viscosity, surface tension, and density) and nozzle radius and it
can be represented by the inverse of Ohnesorge number (Oh)—Z
value (defined as the ratio between the Reynolds number and
square root of the Weber number) can be used to represent the
ink printability in the material jetting-based process [183]. The
nozzle size has a significant influence on the printing resolution
(� 1.2–2 times the nozzle diameter). Although the inkjet print-
head is capable of printing at high printing frequencies (up to
30 kHz), it is recommended to deposit droplets at printing frequen-
cies less than 500 Hz (due to inconsistent pressure within the
print-head at high printing frequencies) [184]. As the nozzle diam-
eter in most jetting-based printing systems is relatively small, it
can only print ink with a narrow range of viscosities that range
between 3 to 30 mPa.s [185].

Jetting-based bioprinting is one of the pioneering 3D printing
technologies to facilitate cell deposition for the fabrication of 3D tis-
sues or organs. The various jetting-based bioprinting techniques
include inkjet-based bioprinting [186], laser-induced forward trans-
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fer (LIFT)/laser-assisted bioprinting [187], acoustic-based bioprinting
[188], microvalve-based bioprinting [189–191], and electrohydrody-
namic jet bioprinting (also known as bio-electrospraying) [192]. It
has emerged as an important technique in the rapidly evolving land-
scape of biotechnology and regenerative medicine for manipulating,
patterning, and assembling biologically relevant materials (cells, bio-
molecules, and biomaterials) in the form of ejected droplets to
achieve specific biological functions in a DOD manner. Some impor-
tant process considerations during jetting-based printing of tissue
constructs include droplet impact velocity [193], bio-ink viscosity
[194], shear stress [195], and cell homogeneity [196–198]. It was
reported that the impact velocity of low-viscosity droplets (in the
order of 1 mPa.s) has a significant effect on the cell viability and
the cell damage increases exponentially with increasing droplet
impact velocity as the shear stress increases strongly with droplet
velocity. Furthermore, the study has also shown that a minimum
droplet volume of 20 nL per spot helps to mitigate evaporation-
induced cell damage [193]. Conversely, an increase in bio-ink viscos-
ity from higher polymer concentration resulted in improved cell via-
bility even at higher droplet impact velocities due to the additional
cushioning effect (higher energy dissipation) for the encapsulated
cells during droplet impact on the substrate surface [194]. Another
work reported that even short-time exposure to high shear stress
(>5 kPa) is detrimental to the cell viability and its long-term prolif-
eration profile during the jetting process [195]. Another important
consideration is the cell homogeneity within the bio-inks during
the jetting-based printing process [196]. Over time, the suspended
cells within the bio-inks would sediment and adhere to the interior
surface of the printing cartridge which lead to cell inhomogeneity. It
was reported that the use of polyvinylpyrrolidone-based bio-ink
helped to reduce cell adhesion and mitigate sedimentation during
the printing process [197], which improved cell homogeneity within
the bio-inks. The different types of bio-inks used in jetting-based
bioprinting include alginate-based (<2% w/v) [199–201], collagen-
based (0.2%–0.3 w/v) [202–205], gelatin-based (up to 4% w/v)
[206,207], and hyaluronic acid-based (up to 2.5% w/v) [208,209].

3.1.5. Binder jetting
Binder jetting is the 5th most used 3D printing technique

(2.36%), and it is used for the fabrication of 3D printed medical
devices such as maxillofacial prostheses [210,211], orthopedics
implants [212–214] and surgical models [215,216]. The powder
(polymers, metals, or ceramics—typical particle size of � 30 lm)
is the fundamental building unit in the binder jetting process
and an ideal powder should have a uniform flow with negligible
force between the particles [217] (Table 1). In the binder jetting
process, a fresh layer of powdered material is spread into a layer
and selectively joined into a pre-defined shape via selective depo-
sition of organic liquid binder in a layer-by-layer manner to obtain
the final ‘‘green” printed parts (generally brittle and highly-
porous). Additional post-processing steps such as infiltration and/
or sintering can be performed to enhance the mechanical proper-
ties after the removal of ‘‘green” printed parts. Some potential
advantages of the binder jetting process include a wide range of
powdered materials for the fabrication process, printing at room
temperature and ambient air, no need for support structures, and
a high fabrication rate, while the limitations include the need for
post-processing steps (sintering and infiltration), potential distor-
tion of printed parts during densification process, high surface
roughness and lower printing resolution [218].

Some strategies to improve the powder flowability include the
use of additives and/or powder coatings and dry powder
[219,220]. The choice of a suitable binder is important during the
binder jetting process; it should have a low printable viscosity,
consistent droplet dispensing, and clean burn-out characteristics
[221–223]. The binding process is highly sophisticated and
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dynamic; the nature of binder-powder interaction differs drasti-
cally with the wetting characteristics, geometry, diameter, and
density of the powdered material and this interaction controls
the geometry accuracy, mechanical properties, and final surface
roughness of the printed parts. The droplet impact and binder infil-
tration are the leading causes of printing defects; high droplet
impact may cause ejection of the fine powders from their original
position (ballistic ejection) [224] while slow binder infiltration
leads to droplet coalescence on the powder-bed surface which
interferes with powder spreading for subsequent layers [225].
Some strategies to overcome these challenges include the addition
of chemical fixatives to enhance the cohesiveness of the powder
bed, improvement of the wetting characteristics of powder materi-
als [226], and reduction of the dispensed droplet diameter to
increase the binder infiltration rate [227].

A series of post-processing steps (debinding and sintering) is
performed on the green body (metal) upon removal from the
unbound powder. The debinding process removes the binder from
the final printed parts before the sintering cycle and it is critical to
minimize the residual stress during the debinding process. The dif-
ferent debinding approaches include thermal debinding, catalytic
debinding, solvent debinding, and wick debinding [228,229]. Next,
sintering is performed to densify and strengthen the green parts
via high-temperature heat treatment [230]. The sinterability of
the particles is dependent on their particle size [231] and particle
morphology [232]. Material shrinkage is a common problem dur-
ing the sintering process and this problem can be solved by using
multimodal powder sizes [233]. Additional post-processing meth-
ods can be performed to achieve near-to-full-density parts; these
approaches are dependent on the type of porosity—closed or open.
Hot isostatic pressing can be applied to significantly reduce or
eliminate pores in printed parts with closed porosity [234],
whereas the infiltration approach is a process of filling a porous
part with a liquid via capillary wetting. Some of the common infil-
trants include epoxy or cyanoacrylate for polymer parts [235] and
bronze for metal parts [236].

3.1.6. DED
DED is the 2nd least commonly used 3D printing technique

(0.88%), and it is mainly used for the fabrication of 3D printed med-
ical devices such as orthopedics implants [237–240]. A broad range
of metals and even ceramics can be utilized in the DED process;
they include chromium, H13 tool steel, Inconel 625, stainless
steels, titanium alloy and tungsten, etc [241] (Table 1). In the
DED process, focused thermal energy (from lasers, electron beam
(EB) [242], or plasma/electric arcs [243]) is used to melt the simul-
taneously deposited metallic material (powder or wire form) to
create a pool of molten metal with an underlying heat-affected
zone (HAZ) along the deposition path [244]. The relative move-
ment of the build plate to the deposition head is controlled by a
computer numerical control (CNC) and the layer-by-layer fabrica-
tion process is repeated to obtain the finished part. A shielding
gas is required to mitigate the oxidation reactions during the print-
ing process by creating an inert atmosphere and a carrier gas is
required to transport the metallic material through the deposition
head to the pool of molten metal. The build plate (substrate) used
in the typical DED process has a similar material composition as
the material preform and the finished part is removed from the
substrate after the printing process. Thermal monitoring using
infrared cameras and/or pyrometers in the DED process is useful
for data collection and feedback control [244–246].

The key advantages of the DED process include the ability to
fabricate functionally graded parts with different material/alloy
concentrations and perform potential repair/cladding applications
[247,248]. The preform used in the DED process can be in the form
of powder or wire. Both the powder-fed and wire-fed DED pro-
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cesses have their unique advantages and limitations. The use of
the powder-fed DED process is more predominant as the blown
powder dynamics can be controlled in real-time and can be altered
to achieve the fabrication of complex structures with higher preci-
sion [249,250]. Different methods such as gas atomization, water
atomization, and plasma rotating electrode process (PREP) are typ-
ically used to produce the spherical powders (10–100 lm diame-
ter) used in the DED process [251]. The use of spherical-shaped
powders helps to minimize the amount of inert gas trapped within
the melt pool and reduce the overall porosity of the finished part.
In contrast, the wire-fed DED process resulted in improved surface
quality and process efficiency, but it requires a higher degree of
control due to potential vibrations [252].

Some key considerations during the DED process include using
an optimal working distance [253] and thermal distortion
[254,255]. The optimal working distance in the DED process is
dependent on a few key parameters such as laser attenuation, dis-
tribution of powder concentration, heat, and mass transfer into the
melt pool [253]. The DED printing process produces high-
temperature gradients which lead to residual stresses and plastic
deformations that affect the structural performance and metal-
lurgy of the printed parts. Thermal distortion of DED printed parts
is influenced by the preheating and cooling conditions, printing
parameters, and the geometry of the printed part [256,257]. Partic-
ularly, depositing the first layer on a cold substrate during the DED
process generates the most residual stresses due to high-
temperature gradients, and reducing the substrate size can reduce
the residual stresses due to lower heat flux and stiffness [255].

3.1.7. Sheet lamination
Sheet lamination is the least commonly used 3D printing tech-

nique (0.59%), and it has only been used for the fabrication of 3D-
printed medical devices such as maxillofacial prostheses [258]. It
can utilize a wide range of materials such as polymers, metals,
ceramics, and even composites [259] (Table 1). In the sheet lamina-
tion process, sheets of material of pre-defined shape/geometry are
bonded together to form the 3D finished parts. The layer thickness
is dependent on the thickness of the sheets of materials, and it
determines the final quality of the printed part. There are different
bonding mechanisms for the sheet lamination process which
include gluing/adhesive bonding, thermal bonding, clamping, and
ultrasonic welding. The gluing/adhesive bonding approach
requires the use of adhesive-backed material sheets that provide
bonding between adjacent layers. The thermal bonding approach
facilitates the bonding of adjacent layers by heating the material
slightly above its melting point in an inert environment. The
clamping approach requires a bolt and/or clamping mechanism
to hold the sheets together; this approach results in clamping
forces that are perpendicular to the laminate interface and there
is a possibility of delamination. The ultrasonic welding approach
applies ultrasonic wave and mechanical pressure on the material
sheets to facilitate diffusion-based bonding [259]. The bonding/-
forming order can be categorized as ‘‘bond then form” or ‘‘form
then bond” processes and the advantages and limitations of both
processes will be discussed in the following sections.

The ‘‘bond then form” approach comprises sheet alignment,
sheet bonding and lastly forming process (cutting according to
the slice contour). A heated roller is typically used to melt the
adhesives and bond the adjacent sheet layers (70–200 lm thick-
ness) and a laser/mechanical cutter is used to obtain the defined
shape/geometry of each layer. The remaining material sheet pro-
vides support for subsequent layers and the process is repeated
to obtain the 3D finished parts. The advantages of the ‘‘bond then
form” sheet lamination process include low material shrinkage,
high fabrication speed, multi-material fabrication, and relatively
lower material, machine, and process cost, whereas the limitations
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include the presence of glue leads to inhomogeneous mechanical
and thermal properties, poor control over the dimensional accu-
racy due to inconsistent material sheet thickness and challenging
to achieve small internal structures [260]. For the ‘‘form then
bond” process, the defined shape/geometry is cut from the material
sheet and then bonded with the preceding substrate until the 3D
finished part is obtained. The ‘‘form then bond” process enables
the fabrication of intricate features and channels, prevents cutting
into previous layers, and eliminates the material removal step, but
it requires an alignment system for accurate bonding between
adjacent layers [260].

3.2. Build orientation and location

The build orientation and location of CAD models within the
build volume of different additive manufacturing (AM) processes
play a critical role in influencing the properties of printed parts.
The build orientation is denoted by the X-, Y- and Z- axes (order
of letters is based on decreasing dimensions—longest to shortest)
and the build location refers to the spatial position of the parted
parts within the build volume (Fig. 2(a)) [262].

Selecting an optimal build orientation for a given part can
improve the quality of the final printed part [263–265]. Extensive
studies were performed to determine the optimal build orientation
and the optimization process leads to fewer support structures
[266–271], improved surface roughness [266,268,271–273],
reduced material cost [266,271,272], reduced build time
[266,268,271], improved mechanical properties [266] and lastly
higher printing accuracy [272]. The build orientation in FDM pro-
cess (material extrusion AM process) influences the ductility and
failure behavior of printed parts; the printed parts in on-edge
(XZY) and flat (XYZ) orientation exhibited higher tensile strength,
flexural strength, and stiffness as compared to parts printed in
upright orientation (ZXY) [274]. Another study evaluated the influ-
ence of build orientation in the SLM process (powder bed fusion
process); the printed Ti-6Al-4V parts in three different orientations
(on-edge, flat, and up-right) showed similar a and prior-b grain
sizes, similar elastic modulus regardless of its build orientation
[275]. However, the change in build orientation influences the duc-
tility of printed samples, with the flat-orientated samples showing
the lowest elongation at break values. This is likely due to the cur-
ling of the flat-orientated samples which led to the generation of
defects during the processing of successive layers [275]. Another
study evaluated the tensile properties of PolyJet 3D printed parts
(material jetting process) at different build orientations; the
microstructure analysis showed that the direction of surface
cracks/voids is dependent on the build orientation [276]. The influ-
ence of build orientation on built parts from vat polymerization
showed that the samples built in the upright orientation had the
highest fracture load values [277].

The mechanical properties of a printed part are directly affected
by the build location; the variation in delivered energy at different
locations (e.g., center vs edges) resulted in printed parts of differ-
ent mechanical properties. A study that studied the influence of
build position reported that the fabricated EBM parts showed finer
microstructures at the top of the build part and coarser microstruc-
tures at the bottom of the build part [278]. Furthermore, it was
reported that the fracture toughness of fabricated AM parts at dif-
ferent locations varies significantly (Fig. 2(b)) [279]. Hence, both
build orientation and location play a critical part in influencing
the mechanical properties of printed parts.

3.3. Support structures

The presence of support structures offers more freedom of
design to fabricate highly complex geometries using 3D printing
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technologies [280]. The use of support structures is critical for
the design and fabrication of complex structures; the number,
type, and position of support structures used during the 3D print-
ing process would affect the mechanical properties and geometric
accuracy of the 3D printed parts [281]. It is interesting to note that
the critical overhang angle varies among the different 3D printing
processes such as material extrusion, powder bed fusion, and vat
polymerization [281]. Automated algorithms are commonly used
to determine the optimal number and position of supports to min-
imize material wastage and manual intervention may be required
for more complex structures. Hence, it is important to analyze the
geometry of printed parts (overhangs, high aspect ratio features,
internal features, and thin features). Although the support struc-
tures can be removed via physical or chemical approaches, the
removal process often leads to surface marks or residues.

A combination of optimized topology and build orientation for
modified CAD models can help to minimize the required number
of support structures [282–284]. The use of topology optimization
in the FDM process has significantly reduced the number of sup-
port structures; numerical experiments are validated through the
FDM process to demonstrate the robustness and efficiency of the
proposed support structure-constrained topology optimization
method [285]. Furthermore, a single-step optimization process
can be implemented to simultaneously optimize the topology,
build orientation, and support structures to minimize the number
of support structures in the powder bed fusion process. High-
quality solutions can be obtained using the proposed multi-
optimization method (tested in a two-dimensional setting using
a simplified support cost model) at a fraction of the time as com-
pared to the fixed-orientation approaches [286]. A two-step opti-
mization process was performed using the Matlab algorithm in
another work to optimize the build orientation and cellular struc-
tures for minimal support structures [287]. Another study reported
the use of lattice support structures with a low volume fraction of
up to 8% for Ti6Al4V parts built using DMLS to reduce the amount
of material and time used in the fabrication of support structures
[288]. A similar study evaluated the influence of different lattice
support structures on maximum normalized residual stresses in
laser powder bed metal additive manufacturing; the diagonal lat-
tice support structure demonstrated the most significant stress
minimization (Fig. 3) [289] (See Table 2).
4. Material Considerations

4.1. Material batch-to-batch consistency

It is critical to determine the consistency of the raw materials
and final 3D printed parts as the printing process might induce
some chemical and/or physical changes to the material. A series
of steps to ensure material consistency includes proper documen-
tation of the material composition and evaluation tests for differ-
ent AM techniques. Proper documentation of the printing
material composition (raw material, additives, cross-linkers, or
processing aids) includes recording the material supplier, material
name, and its Chemical Abstracts Service (CAS) number, material
specifications, and material certificates of analysis (COAs). Further-
more, it is also important to perform appropriate characterization
and aging tests based on the material type (metal, ceramic, and
polymer) and form (powders, filaments, fluid, and hydrogels) used
in each specific AM technique over time. The characterization tests
for different material types include the evaluation of chemical
composition for metal, metal alloy, or ceramic materials and the
evaluation of chemical composition, molecular weight distribution,
and temperatures (glass transition (Tg), melting (Tm), and crystal-
lization (Tc)) for polymers. The characterization tests for materials



Fig. 2. (a) Different process parameters: various build orientations are denoted by X-, Y- and Z- axes (order of letters is based on decreasing dimensions—longest to shortest);
upright (ZXY-red), on-edge (XZY-blue), and flat (XYZ-yellow). Reproduced from Ref. [274] with permission. (b) Location-dependent properties in as-deposited EBM Ti-6Al-4V
materials are affected by convoluted interactions between defect-dominated and microstructure-dominated contributions. Reproduced from Ref. [279] with permission.
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of the different forms include evaluation of powder diameter, pow-
der size distribution and its rheological behavior, evaluation of fil-
ament diameter and its diametric tolerances, and evaluation of
fluid viscosity or viscoelasticity and its pot life.

4.2. Material recycling

Material recycling in some of the 3D printing processes such as
powders from binder jetting, DED, powder bed fusion processes,
and resins from vat photopolymerization raised concerns over
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the possible alteration of material properties from its virgin state.
The recycled free powder after a print may contain defects from
elevated bed temperature and excessive sintering, whereas there
might be partial polymerization of the resin during the photo-
crosslinking process.

The recycled powders from the binder jetting process were
stored and dried at 180 �C overnight in a vacuum to remove the
moisture and passed through a 45 lm sieve. The presence of
deformed powder particles was observed for unused stainless steel
powders; the ratio of larger particles (>30 lm) to smaller particles



Fig. 3. Implementation of topology optimization to obtain designs with maximum performance and significantly reduced support structures using a support structure
constraint methodology; optimized mount bracket at 0.7 volume fraction, (a) unconstrained, (b) relative constraint, g = 0.80, and (c) 3D printed mount bracket and their
required support structures at 0.7 volume fraction (left: unconstrained design resulted in more support structures, right: constrained design with g = 0.80 resulted in less
support structures). Reproduced from Ref. [285] with permission. (d) CAD model of bearing brackets with different lattice support structures (cubic, diagonal, and cross). (e)
Comparison table of optimization results for the three different lattice support structures. Reproduced from Ref. [289] with permission.

Table 2
Comparison of the optimization results of the three lattice structure type.

Cubic Diagonal Cross

Initially smallest maximum normalized stress 1.56 14.24 1.48
Optimized maximum normalized stress 1.06 0.93 1.16
Optimal orientation (U, u) (�2.359, 0.08) (�2.343, 0.004) (2.348, 0)
Support volume of optimal orientation (mm3) 1.0212 � 104 3.288 � 104 3.007 � 104

Total iteration 54 50 37
Average computational cost per orientation (seconds) — 20.9 —
Total computational cost (hours) 5.62 5.21 3.85
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(<10 lm) increases after repeated recycling process (Fig. 4(a))
[290]. Interestingly, the final printed parts using both fresh and
recycled powders exhibited comparable hardness and yield
strength even though the density of sintered parts from fresh pow-
der was �1.5% higher than the recycled powder (Fig. 4(b)) [290].

Another study reported that the recycled titanium powders
from the powder bed fusion EBM process showed an increased
number of finer particles with a lower degree of fluidity, whereas
the recycled nickel alloy powders for the powder bed fusion SLM
process showed an increased number of coarse particles and higher
fluidity [291]. Although similar microstructures were observed
from both new and recycled SLM powders, an increased porosity
in fabricated parts using recycled powders was observed. Compa-
rable ultimate tensile strength and yield strength were observed
for both new and recycled powders, while there was a decrease
in the ductility and impact toughness for the recycled powders
[291].

A recent study evaluated the influence of recycling on the
zirconia-based slurry for vat photopolymerization; agglomeration
of zirconia was observed (Fig. 4(c)) and it increased the slurry vis-
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cosity (Fig. 4(d)). Furthermore, there was a significant decrease in
density of sintered parts from >99% in pristine samples to �90%
in recycled samples. Although the sintered parts from both sam-
ples showed similar hardness, there was a significant decrease in
flexure strength (Fig. 4(e)) and Young’s modulus (Fig. 4(f)) for the
recycled samples. Hence, the ceramic-based slurry may not be suit-
able for material recycling in the vat photopolymerization 3D
printing technique [292]. To date, there are only limited investiga-
tions on the suitability of recycled materials in different 3D print-
ing processes and it is important to conduct a series of more
extensive tests to carefully evaluate the suitability of material
recycling for different 3D printing processes.

4.3. Protein adsorption on the material interface of printed parts

The protein adsorption on the material interface plays a critical
role in regulating cell adhesion on the material interface. Protein
adsorption at a material interface refers to the process by which
proteins in a biological fluid bind onto the surface of a material.
The key mechanism behind protein adsorption at the material



Fig. 4. (a) Influence of material recycling on the particle size distribution for stainless steel 316L obtained by laser diffraction technique (solid line: fresh powder, dotted line:
recycled powder). (b) Mechanical properties of wrought 316L and 3D printed parts using binder jetting technique with fresh and recycled 316L powder. Reproduced from Ref.
[290] with permission. (c) Representative images of pristine and recycled zirconia after milling for 24, 48, and 72 h, (d) Influence of pristine and recycled zirconia powder on
the slurry viscosity at varying rotation speed. (e) Flexural strength and (f) Young’s modulus of sintered zirconia parts printed at a layer thickness of 20 lm (pristine) and
40 lm (pristine and recycled). Reproduced from Ref. [292] with permission.
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interface is due to the displacement of organized water molecules
(lower entropy, higher free energy) by proteins [293]. The water
molecules would influence the protein conformation and expose
binding sites for interaction with the material interface; hence
affecting the type and strength of interactions between the protein
and material interface. Furthermore, the protein adsorption onto a
material interface is also influenced by several other factors such as
its protein structure (primary, secondary, tertiary, and quaternary)
[294], isoelectric point [295], solubility [296], and wettability
[297]. The free binding sites on the adsorbed protein layer can then
facilitate cell adhesion and proliferation, which may be beneficial
to tissue integration and wound healing [298]. In contrast, exces-
sive protein adsorption can lead to material ‘‘fouling” which can
impair the device’s function and trigger adverse reactions in the
body [299].

Different material surface properties such as surface chemistry,
wettability, and topography can affect the protein adsorption and
cell adhesion at the material interface (Fig. 5(a)) [300]. Substantial
research works on surface chemistry aim to create uniformly
coated material surfaces with different chemical functionalities
that can prevent non-specific protein adsorption and provide
bioinert surfaces. The surface chemistry plays a critical role in
influencing the type, conformation, and strength of protein adsorp-
tion (Fig. 5(b)) [301–304]. The amount, type, and conformation of
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the adsorbed proteins (such as collagen, vitronectin, fibronectin,
and laminin) regulate integrin binding, which can trigger different
signaling pathways that control various cellular functions. The cells
begin to spread and stretch on the surface after adhering to the
surface; the protein-mediated adhesive interactions serve as
mechano-sensors that facilitate cell-ECM interactions [305,306].
The most common strategy to functionalize the material surface
is to apply various monolayer/multilayer polymer coatings [307].
Although this method is effective in reducing protein adsorption
and thrombocyte activation, some of the existing challenges
include the development of homogeneous and long-term stable
monolayer coatings on chemically inert surfaces [308]. Surface
wettability can be referred to as hydrophobicity/hydrophilicity
and it is an important factor that affects protein adsorption. It is
well-documented that protein unfolding and surface coverage are
significantly higher on hydrophobic surfaces than on hydrophilic
surfaces [309]. The proteins are shielded from the hydrophilic sur-
face due to the strong water-surface interactions on hydrophilic
surfaces and are consequently desorbed. Lastly, the surface topog-
raphy of a device can be manipulated to control cell adhesion via
protein adsorption. The different surface topographical cues
including surface roughness, curvature and size of surface features
can induce changes in the protein’s structure and orientation
which affect the cell adhesion at the material interface [310,311].



Fig. 5. (a) Influence of material surface properties (surface chemistry, wettability, and topography) on protein adsorption behavior, such as, the extent and binding strength of
protein adsorption, alignment, orientation, and spatial arrangement of proteins. Reproduced from Ref. [300] with permission. (b) Schematic drawing to illustrate the
underlying mechanisms for vitronectin adsorption on different self-assembled monolayers (SAMs) with four kinds of terminal groups (ACOOH, ANH2, ACH3, and AOH) to
serve as model surfaces with opposing charges or wettability. The arginyl-glycyl-aspartic acid (RGD) loops were unrestrained and accessible for cell binding on both
negatively and positively charged surfaces, whereas most of the RGD loops were restrained by substrates and deactivated for integrin binding on neutral hydrophobic
surfaces or the vitronectin proteins are shielded and consequently desorbed from neutral hydrophilic surface. Reproduced from Ref. [304] with permission.
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A high-throughput and quantitative approach was implemented to
investigate the influence of surface roughness, protein concentra-
tion, and protein type on the protein-surface interactions [312].
The surface roughness has a significant effect on the adsorbed pro-
teins; the study showed that an increase in surface roughness
(from 15 to 30 nm) resulted in a significant increase in saturation
uptake (up to 600%). Furthermore, the nanostructured surfaces
were shown to promote the formation of protein aggregates within
the nanometric pores with an aspect ratio greater than 0.4 (de-
pending on the characteristics of each protein) [312]. Another crit-
ical parameter for surface topography is surface curvature;
different studies have reported that an increase in the local curva-
12
ture would lead to decreased protein adsorption [313,314]. Hence,
a good understanding of the material surface properties is impor-
tant for the development of advanced biomaterials to manipulate
protein adsorption and regulate cell adhesion on material
interfaces.

4.4. Biocompatibility of printed parts

A biocompatible material does not induce any adverse reaction
when in contact with surrounding living tissues [315]. The differ-
ent factors that influence the biocompatibility of a printed product
include the chemical composition [316] and surface properties
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[317]. The final finished products may undergo a range of post-
processing procedures which can lead to a significant change in
the surface chemistry and topography which in turn affects the
biocompatibility [317]. It is recommended to test the medical
devices in their final finished form and composition after the var-
ious post-processing steps (sintering, coating, cleaning, and
sterilization).

The establishment of ISO 10993-5 aims to standardize various
existing procedures and specifies the requirements and guidelines
for the in-vitro cytotoxicity testing of devices [318]. The goal of in-
vitro cytotoxicity testing is to evaluate the potential of a device to
cause cell damage and ensure its safety for use in humans. ISO
10993-5 protocol involves the use of established cell lines (ATCC
CCL-1, CCL-10, CCL-75, CCL-81, CCL-163, and CCL-171 endorsed
by ISO experts) for preliminary phase of investigation, which
includes accurate and reproducible quantitative measurement of
cell metabolic functions, via cell-counting procedures [319], DNA
level assessment [320] and MTT assay [321].

4.5. Degradation properties of 3D printed parts

Most medical devices are fabricated using biocompatible mate-
rials (metals, ceramics, or polymers) and these materials are likely
to produce harmless degradation by-products as the implanted
medical devices degrade over time within the human body. It is
important to note that the degradation profiles of metal-based,
ceramic-based, or polymer-based medical devices can vary signif-
icantly. Metals and ceramics are highly resistant to corrosion and
degradation under physiologic conditions, making them durable
for long-term implantation [322–324]. In contrast, the polymers
undergo different forms of degradation such as hydrolysis, oxida-
Fig. 6. FDA 510(k)-approved 3D printed medical devices. (a) Timeline of FDA-approved 3
cleared within each year from the year 2016 to the year 2020. (c) Concentric pie chart in
the device type and patient specificity. The data set above only contains 3D-printed me
pathway and does not include 3D-printed medical devices cleared through other pathw
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tion, and mechanical wear [325,326]. Although there are strategies
to minimize/isolate the release of degradation by-products from
implanted medical devices to surrounding tissues via the use of
medical coatings [327,328], the human body has the innate ability
to metabolize and remove some of these degradation by-products
[329]. Hence, the choice of suitable material for a specific medical
device should depend on important factors such as intended appli-
cation, biomechanical requirements, and the device’s expected
lifespan.
5. Regulatory considerations

3D printing technology has gained significant traction in the
field of medicine and healthcare; different regulatory bodies
around the world such as the Food and Drug Administration
(FDA) from the United States, the European Medicines Agency
(EMA) from the European Union, and National Medicine Products
Administration (NMPA) from China have been actively involved
in the regulation and approval of 3D printed medical devices. Some
of the important milestones for FDA-approved 3D printing technol-
ogy include the first FDA-approved 3D printed cranial implant
(OsteoFab Patient-Specific Cranial Device received FDA clearance
in February 2013) developed by Oxford Performance Materials
(USA) and the first 3D printed titanium-based spinal device (CAS-
CADIA Lateral Interbody System received its FDA 510(k) clearance
and CE mark in January 2016) developed by K2M Group Holdings
(acquired by Stryker in year 2018). To date, numerous 3D printing
companies have received FDA 510(k) clearance for their 3D printed
medical devices based on the findings published by the FDA
department (Fig. 6). Since then, several studies demonstrated the
D printed medical devices from 2010 to 2020. (b) A detailed analysis of device type
dicating the printing technologies and materials. (d) Concentric pie chart indicating
dical devices that were declared substantially equivalent through the FDA’s 510(k)
ays. Reproduced from Ref.[335] with premission.
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implementation of 3D-printed medical devices into human bodies
[330–333].

Despite the significant progress in the regulation of 3D printed
medical devices, there are currently no FDA-approved or cleared
3D bioprinted tissues/organs. To date, there is a lack of standard-
ization in the field of 3D bioprinting (in terms of technology, mate-
rials, and process), which severely limits its adoption for clinical
medicine. Furthermore, the 3D bioprinted cell-laden tissues/organs
pose several challenges to regulatory authorities due to their
increased complexity as compared to conventional 3D printed
medical devices. Although good practices such as documentation
of the cell source, evaluation of cell viability and function, and
maintenance of a high standard of sterility can be adopted during
the entire bioprinting process, some of the remaining bottlenecks
include the logistics and unknown long-term safety in human
hosts. There are limited research facilities that have the expertise
and technology to fabricate 3D bioprinted tissues/organs; hence
the patient-derived cells and extracellular matrices would need
to be transported to a specialized biofabrication facility for tis-
sue/organ fabrication and maturation before sending the matured
tissue/organ back to the clinical facilities. The logistics can be
highly challenging as transportation of living tissues/organs is a
highly specialized and time-sensitive process that requires careful
coordination and adherence to strict protocols to ensure that the
3D bioprinted tissues/organs remain viable and safe for transplant.
Nevertheless, a recent study has offered some glimpse of hope in a
first-of-its-kind clinical trial—the first transplantation of autolo-
gous bioprinted ear implant in humans (developed by 3D Bio Ther-
apeutics) was demonstrated in June 2022, which highlighted the
potential of 3D bioprinting technology for translational medicine
[334].

Although there is currently no FDA-approved 3D bioprinted tis-
sue construct, numerous 3D printing companies have received FDA
510(k) clearance for their 3D printed medical devices. Some impor-
tant regulatory considerations of 3D-printed medical devices
include sterility and mechanical properties of printed parts. It is
important to adhere to the strict guidelines and requirements for
the sterility of medical devices to mitigate the potential occurrence
of infections. Furthermore, many medical devices (orthopedic
implants, prostheses, and surgical instruments) require specific
mechanical properties to perform their intended functions effec-
tively and mechanical failures can lead to serious consequences
during use. In the subsequent sections, more detailed discussions
ofthese key areas will be provided.

5.1. Sterility of printed parts

A sterile implant reduces the risk of potential infections and
ensures the safety and effectiveness of the implantation process
[336,337]. Sterility refers to the absence of pathogenic microorgan-
isms and it can be achieved through the use of different physical/-
chemical sterilization methods such as heat [338], radiation [339],
and chemicals [340–342]. The sterility assurance level (SAL) is a
measure of the probability that a medical device is sterile and
the accepted SAL for medical devices is 10�6 (one in a million
chance).

The autoclaving process is a heat sterilization process that gen-
erates steam under pressure to eliminate microorganisms. The
effectiveness of the autoclaving process in eliminating microbes
is dependent on the temperature, the contact duration, and the free
circulation of pressurized steam [338]. However, the autoclaving
sterilization method is not suitable for devices that are sensitive
to heat or moisture. Gamma radiation is a type of ionizing radiation
that can destroy microorganisms by destroying their DNA.
Although it is an effective sterilization for devices that are sensitive
to heat and chemicals, the high-energy gamma radiation can dam-
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age the polymer molecules over time and affect their chemical and
physical properties. Chemical sterilization uses chemicals such as
hydrogen peroxide (H2O2) [340], ethylene oxide (C2H4O) [341], or
glutaraldehyde [342] to kill the microorganisms. The chemical
sterilization process involves exposing the devices to the chemicals
at controlled temperature, humidity, and duration for effective
sterilization. Although it can be used to sterilize devices that are
sensitive to heat and radiation, some of the chemicals may be toxic
and additional steps are required to remove the residual chemicals
on the devices. Hence, the selection of suitable sterilization tech-
niques is dependent on the material properties of the printed
devices. Notably, the FDA recently approved the first H2O2 steril-
ization system from Steris Healthcare (Ireland) in August 2023
for the sterilization of 3D-printed medical devices.
5.2. Mechanical properties of printed parts

A critical aspect of medical device testing considerations
includes mechanical testing for patient-specific AM parts [343].
Upon completion of different post-processing, cleaning, and steril-
ization steps, the final finished AM parts should be subjected to
similar mechanical testing as those fabricated using conventional
manufacturing methods (tensile, compression, bend, fatigue,
impact tests, etc). The final finished parts or representative test
coupons should be used for recommended testing and more
emphasis should be placed on structures containing voids, sup-
ports, or porous regions. The device type and application deter-
mine the type of tests to be conducted (such as ultimate
strength, yield strength, modulus, creep, fatigue, and abrasive
tests). Furthermore, it is important to perform proper documenta-
tion of all the post-processing steps (removal of residuals, heat
treatment, and final machining) as the material properties and per-
formance of final finished parts are affected by the post-processing
steps [344,345]. As highlighted in an earlier section, the build ori-
entation and location have significant effects on the properties of
printed parts. Hence, it is important to develop a stringent manu-
facturing process with thorough monitoring to ensure the batch-
to-batch consistency of final finished parts.
6. Concluding Remarks

3D printing has attracted increasing attention for the fabrica-
tion of medical devices and tissue constructs in recent years. There
are seven classifications of 3D printing processes, and a good
understanding of the different 3D printing processes, along with
their advantages and limitations, is important for the selection of
a suitable fabrication technique based on the intended application.
Next, biomaterials play a critical role in the mechanical and biolog-
ical properties of the 3D printed parts. Some of the critical material
considerations include the consistency of batch-to-batch raw bio-
materials, the effect of material recycling on the material proper-
ties, the influence of material surface properties on protein
adsorption and cell adhesion at the material interface, biocompat-
ibility and degradation properties of 3D printed parts. Lastly, the
3D-printed medical devices and tissue constructs should be sub-
jected to stringent regulations in terms of sterility and mechanical
properties to ensure their safety and efficacy. Hence, it is timely to
provide a concise review that highlights the various important con-
siderations (process, material, and regulatory) for 3D printed med-
ical devices and tissue constructs. We envisioned that a good
understanding of the various key considerations in 3D printing
(process, material, and regulatory) is critical for the fabrication of
improved patient-specific 3D printed medical devices and tissue
constructs.
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